Answer:
C = 4,174 10³ V / m^{3/4}
, E = 7.19 10² / ∛x, E = 1.5 10³ N/C
Explanation:
For this exercise we can calculate the value of the constant and the electric field produced,
Let's start by calculating the value of the constant C
V = C
C = V / x^{4/3}
C = 220 / (11 10⁻²)^{4/3}
C = 4,174 10³ V / m^{3/4}
To calculate the electric field we use the expression
V = E dx
E = dx / V
E = ∫ dx / C x^{4/3}
E = 1 / C x^{-1/3} / (- 1/3)
E = 1 / C (-3 / x^{1/3})
We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E
E = 3 / C (0- (-1 / x^{1/3}))
E = 3 / 4,174 10³ (1 / x^{1/3})
E = 7.19 10² / ∛x
for x = 0.110 cm
E = 7.19 10² /∛0.11
E = 1.5 10³ N/C
The latin name for hydra constellation is "Water snake"
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2
Yes yes multiply hurry up