1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
3 years ago
7

A battery is rated at 12 V and 160 A-h. How much energy does the battery store? What is the cost of this energy at $0. 15/kWh?

Physics
1 answer:
Valentin [98]3 years ago
3 0

Answer:

The cost of energy is 0.29$.

Explanation:

Given that,

Voltage V= 12 V

Charge Q= 160 A-h

We need to calculate the energy

Using formula of energy

E = Pt

E =VIt

Where, E = energy

I= current

V = Potential

t = time

Put the value into the formula

E = 12\times160\times3600

E =6.9\times10^{6} J

The cost of this energy at 0.15/kwh

Total\ cost = Energy\times 0.15 kwh

Here, Energy = power x time

In units,

J=watt\times s

But ,  Energy in 1 hour is:

E = 1920\ J

So, The cost of this energy is

Total\ cost =1920\dfrac{\times0.15}{1000}

total\ cost = 0.29\$

Hence, The cost of energy is 0.29$.

You might be interested in
An electron and a proton are held on an x axis, with the electron at x = + 1.000 m
mixas84 [53]

Answer:

  r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

Explanation:

For this exercise we must use conservation of energy

the electric potential energy is

          U = k \frac{q_1q_2}{r_{12}}

for the proton at x = -1 m

          U₁ =- k \frac{e^2 }{r+1}

for the electron at x = 1 m

          U₂ = k \frac{e^2 }{r-1}

starting point.

        Em₀ = K + U₁ + U₂

        Em₀ = \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1}

final point

         Em_f = k e^2 ( -\frac{1}{r_2 +1} + \frac{1}{r_2 -1})

   

energy is conserved

        Em₀ = Em_f

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})              

       

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(  \frac{2}{(r_2+1)(r_2-1)} )

we substitute the values

½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [ - \frac{1}{20+1} + \frac{1}{20-1} ) = 9 109 (1.6 10-19) ²( \frac{2}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ ( \frac{1}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷     \frac{1}{r_2^2 -1}

          \frac{2.0475 \ 10^{-28} }{1.1549 \ 10^{-37} } = \frac{1}{r_2^2 -1}

          r₂² -1 = (4.443 10⁸)⁻¹

           

          r2 = \sqrt{1 + 2.25 10^{-9}}

          r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

4 0
3 years ago
HELP PLS MARKING BRANLIST 100 pts TAKING TEST RN
AlladinOne [14]

Answer:

15 m/s^2 The first thing to calculate is the difference between the final and initial velocities. So 180 m/s - 120 m/s = 60 m/s So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving 60 m/s / 4.0 s = 15.0 m/s^2 Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2

Explanation:

8 0
3 years ago
Question 1 of 10
Bad White [126]
The answer is b maybe?
3 0
3 years ago
A supersonic nozzle is also a convergent–divergent duct, which is fed by a large reservoir at the inlet to the nozzle. In the re
Lady_Fox [76]

Answer:

155.38424 K

2.2721 kg/m³

Explanation:

P_1 = Pressure at reservoir = 10 atm

T_1 = Temperature at reservoir = 300 K

P_2 = Pressure at exit = 1 atm

T_2 = Temperature at exit

R_s = Mass-specific gas constant = 287 J/kgK

\gamma = Specific heat ratio = 1.4 for air

For isentropic flow

\frac{T_2}{T_1}=\frac{P_2}{P_1}^{\frac{\gamma-1}{\gamma}}\\\Rightarrow T_2=T_1\times \frac{P_2}{P_1}^{\frac{\gamma-1}{\gamma}}\\\Rightarrow T_2=00\times \left(\frac{1}{10}\right)^{\frac{1.4-1}{1.4}}\\\Rightarrow T_2=155.38424\ K

The temperature of the flow at the exit is 155.38424 K

From the ideal equation density is given by

\rho_2=\frac{P_2}{R_sT_2}\\\Rightarrow \rho=\frac{1\times 101325}{287\times 155.38424}\\\Rightarrow \rho=2.2721\ kg/m^3

The density of the flow at the exit is 2.2721 kg/m³

4 0
3 years ago
How does potential and kinetic energy change in to each other and back again?
PolarNik [594]
They can change because the law of conservation of energy allows it to happen, for example when you are sitting, your body is at a potential energy state, meaning you are inert, you are not moving, but when you get up and suddenly start walking or running, that energy is converted to kinetic energy, meaning that you are moving and can be changed back into potential energy if all of a sudden you stop running or walking to rest or sit down. This is just an example of how energy can are transferred multiple ways
6 0
3 years ago
Other questions:
  • With solutions please give with solution <br>if u give me with solution I will mark in brainlist​
    5·1 answer
  • A skydiver is in free fall. What is the only force acting upon the skydiver.
    12·1 answer
  • In an atomic model that includes a nucleus, negative charge is
    14·2 answers
  • A garden hose having with an internal diameter of 1.1 cm is connected to a (stationary) lawn sprinkler that consists merely of a
    11·1 answer
  • Suppose a logs mass is 5kg .after burning,the mass of the ash is 1kg .explain what may have happened to the other 4kg
    13·1 answer
  • An upward moving object must be experiencing (or at least usually does experience) an upward force.
    12·1 answer
  • Drag the tiles to the correct boxes to complete the pairs.
    11·1 answer
  • Why are electromagnets, rather than permanent magnets, used in MRLs?
    5·1 answer
  • Her wolle<br>molecules are called<br>e Blood cells, Proteins<br>membrance remain in the blood​
    10·1 answer
  • One particle has a charge of -1.87 x 10-9 C, while another particle has a charge of -1.10 x 10-9 C. If the two particles are sep
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!