Answer:
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Explanation:
For this exercise we must use conservation of energy
the electric potential energy is
U =
for the proton at x = -1 m
U₁ =
for the electron at x = 1 m
U₂ =
starting point.
Em₀ = K + U₁ + U₂
Em₀ =
final point
Em_f =
energy is conserved
Em₀ = Em_f
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(
)
we substitute the values
½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [
) = 9 109 (1.6 10-19) ²(
)
2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ (
)
2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷
r₂² -1 = (4.443 10⁸)⁻¹
r2 =
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Answer:
15 m/s^2 The first thing to calculate is the difference between the final and initial velocities. So 180 m/s - 120 m/s = 60 m/s So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving 60 m/s / 4.0 s = 15.0 m/s^2 Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2
Explanation:
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³
They can change because the law of conservation of energy allows it to happen, for example when you are sitting, your body is at a potential energy state, meaning you are inert, you are not moving, but when you get up and suddenly start walking or running, that energy is converted to kinetic energy, meaning that you are moving and can be changed back into potential energy if all of a sudden you stop running or walking to rest or sit down. This is just an example of how energy can are transferred multiple ways