Answer:
A) 15.0 years
Explanation:
Due to the distance to the star system is in light-year units, we can compute the time by using:

then, Rob will take to complete the trip about 15 light-years.
hope this helps!!
We don't know the change in velocity, so can't answer.
The power in horsepower is 40.1 hp
Explanation:
We start by calculating the work done by the airplane during the climb, which is equal to its change in gravitational potential energy:

where
mg = 11,000 N is the weight of the airplane
is the change in height
Substituting,

Now we can calculate the power delivered, which is given by

where
is the work done
is the time taken
Substituting,

Finally, we can convert the power into horsepower (hp), keeping in mind that

Therefore,

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
Answer:
Psm = 30.66 [Psig]
Explanation:
To solve this problem we will use the ideal gas equation, recall that the ideal gas state equation is always worked with absolute values.
P * v = R * T
where:
P = pressure [Pa]
v = specific volume [m^3/kg]
R = gas constant for air = 0.287 [kJ/kg*K]
T = temperature [K]
<u>For the initial state</u>
<u />
P1 = 24 [Psi] + 14.7 = 165.47[kPa] + 101.325 = 266.8 [kPa] (absolute pressure)
T1 = -2.6 [°C] = - 2.6 + 273 = 270.4 [K] (absolute Temperature)
Therefore we can calculate the specific volume:
v1 = R*T1 / P1
v1 = (0.287 * 270.4) / 266.8
v1 = 0.29 [m^3/kg]
As there are no leaks, the mass and volume are conserved, so the volume in the initial state is equal to the volume in the final state.
V2 = 0.29 [m^3/kg], with this volume and the new temperature, we can calculate the new pressure.
T2 = 43 + 273 = 316 [K]
P2 = R*T2 / V2
P2 = (0.287 * 316) / 0.29
P2 = 312.73 [kPa]
Now calculating the manometric pressure
Psm = 312.73 -101.325 = 211.4 [kPa]
And converting this value to Psig
Psm = 30.66 [Psig]