Answer:
The temperature of the core raises by
every second.
Explanation:
Since the average specific heat of the reactor core is 0.3349 kJ/kgC
It means that we require 0.3349 kJ of heat to raise the temperature of 1 kg of core material by 1 degree Celsius
Thus reactor core whose mass is
will require

energy to raise it's temperature by 1 degree Celsius in 1 second
Hence by the concept of proportionately we can infer 150 MW of power will increase the temperature by
Answer:
B can take 0.64 sec for the longest nap .
Explanation:
Given that,
Total distance = 350 m
Acceleration of A = 1.6 m/s²
Distance = 30 m
Acceleration of B = 2.0 m/s²
We need to calculate the time for A
Using equation of motion

Put the value in the equation



We need to calculate the time for B
Using equation of motion
Put the value in the equation



We need to calculate the time for longest nap
Using formula for difference of time



Hence, B can take 0.64 sec for the longest nap .
Answer:
Therefore the correct statement is B.
Explanation:
In the interference and diffraction phenomena, the natural wave of electromagnetic radiation must be taken into account, the wave front that advances towards the slit can be considered as when it reaches it behaves like a series of wave emitters, each slightly out of phase from the previous one, following the Huygens principle that states that each point is compiled as a source of secondary waves.
The sum of all these waves results in the diffraction curve of the slit that has the shape
I = Io sin² θ /θ²
Where the angle is a function of the wavelength and the width of the slit.
From the above, the interference phenomenon can be treated as the sum of two diffraction phenomena displaced a distance equal to the separation of the slits (d)
Therefore the correct statement is B
There are different forces acting on an object like nuclear force , gravitational force...plus external forces like friction and other..
net sum of all these is resultnat
Answer:
B. The same on the moon.
Explanation:
The density of an object is the ratio of the mass contained by the object to the volume occupied by that mass.

When the object is taken from the earth to anywhere in the universe, its mass remains constant. The dimensions of the object and hence its volume also remains constant anywhere in the universe.
Therefore, the density of the object will also remain the same as it depends upon the mass and the volume of the object.
So, the correct option is:
<u>B. The same on the moon.</u>