12.5 times 14 and convert to meters its 1.75 meters per second
Answer:
gₓ = 23.1 m/s²
Explanation:
The weight of an object is on the surface of earth is given by the following formula:

where,
W = Weight of the object on surface of earth
m = mass of object
g = acceleration due to gravity on the surface of earth = strength of gravity on the surface of earth
Similarly, the weight of the object on Jupiter will be given as:

where,
Wₓ = Weight of the object on surface of Jupiter = 34.665 N
m = mass of object = 1.5 kg
gₓ = acceleration due to gravity on the surface of Jupiter = strength of gravity on the surface of Jupiter = ?
Therefore,


<u>gₓ = 23.1 m/s²</u>
Answer:

Explanation:
The period of the simple pendulum is:

Where:
- Cord length, in m.
- Gravity constant, in
.
Given that the same pendulum is test on each planet, the following relation is formed:

The ratio of the gravitational constant on planet CornTeen to the gravitational constant on planet Earth is:



Answer: D
Height of marble from ground
Explanation:
From the formula of kinetic energy and potential energy,
K.E = 1/2mv^2
While
P.E = mgh
From all the parameters given from the question. You can see that mass is constant, acceleration due to gravity is also constant.
Independent variable must be a value that can varies.
Since Jack rolled a marble down a ramp and recorded the potential energy and kinetic energy of the marble at different positions on the ramp to see the effects on both energies.
This different position must be the height which will produce an effect on the potential and kinetic energy of the marble.
Independent variable always provides an effect for dependent variable. Which are kinetic energy and potential energy in this case.
Height of marble from ground is the right answer.