Answer:
The half-life time, the team equired for a quantity to reduce to half of its initial value, is 79.67 seconds.
Explanation:
The half-life time = the time required for a quantity to reduce to half of its initial value. Half of it's value = 50%.
To calculate the half-life time we use the following equation:
[At]=[Ai]*e^(-kt)
with [At] = Concentration at time t
with [Ai] = initial concentration
with k = rate constant
with t = time
We want to know the half-life time = the time needed to have 50% of it's initial value
50 = 100 *e^(-8.7 *10^-3 s^- * t)
50/100 = e^(-8.7 *10^-3 s^-1 * t)
ln (0.5) = 8.7 *10^-3 s^-1 *t
t= ln (0.5) / -8.7 *10^-3 = 79.67 seconds
The half-life time, the team equired for a quantity to reduce to half of its initial value, is 79.67 seconds.
I don't see the options for an answer, so here is a list of all of the transition metals lol
- <em>Scandium</em>
- <em>Titanium</em>
- <em>Vanadium</em>
- <em>Chromium</em>
- <em>Manganese</em>
- <em>Iron</em>
- <em>Cobalt</em>
- <em>Nickel</em>
- <em>Copper</em>
- <em>Zinc</em>
- <em>Yttrium</em>
- <em>Zirconium</em>
- <em>Niobium</em>
- <em>Molybdenum</em>
- <em>Technetium</em>
- <em>Ruthenium</em>
- <em>Rhodium</em>
- <em>Palladium</em>
- <em>Silver</em>
- <em>Cadmium</em>
- <em>Lanthanum</em>
- <em>Hafnium</em>
- <em>Tantalum</em>
- <em>Tungsten</em>
- <em>Rhenium</em>
- <em>Osmium</em>
- <em>Iridium</em>
- <em>Platinum</em>
- <em>Gold</em>
- <em>Mercury</em>
- <em>Actinium</em>
- <em>Rutherfordium</em>
- <em>Dubnium</em>
- <em>Seaborgium</em>
- <em>Bohrium</em>
- <em>Hassium</em>
- <em>Meitnerium</em>
- <em>Darmstadtium</em>
- <em>Roentgenium</em>
- <em>Copernicium p</em>
The aim is to use less space while demonstrating the distribution of electrons in shells
If you want to depict how an atom's electrons are scattered across its subshells, an orbital notation is more suited.
This is due to the fact that some atoms have unique electronic configurations that are not readily apparent from textual configurations.
<h3>How does electron configuration work?</h3>
The placement of electrons in orbitals surrounding an atomic nucleus is known as electronic configuration, also known as electronic structure or electron configuration.
<h3>What sort of electron arrangement would that look like?</h3>
- For instance: You can see that oxygen contains 8 electrons on the periodic table.
- These 8 electrons would fill in the following order: 1s, 2s, and finally 2p, according to the aforementioned fill order. O 1s22s22p4 would be oxygen's electron configuration.
learn more about electronic configuration here
brainly.com/question/26084288
#SPJ4
Answer:
B
Explanation:
Brainly Patrol ima stop you here