1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
6

Is this right if not pls lmk what the correct answer is:)

Chemistry
1 answer:
trapecia [35]3 years ago
5 0

Answer:

It's right

Explanation:

Hopefully this helps!

You might be interested in
Does gravity exist without air?
sveticcg [70]

Mass is required for gravity. Higher mass implies higher gravitational drag. Most of these thoughts are tied to other planets without atmospheres, or the moon. The moon doesn't have any air or atmosphere and it pulls the Earth water.

Please correct any mistakes in my answer!! I'd be happy to fix it!! :)

3 0
3 years ago
The H 2 produced in a chemical reaction is collected through water in a eudiometer. If the pressure in the eudiometer is 101.3 k
Gnom [1K]

The H2 produced in a chemical reaction is collected through water in a eudiometer. The pressure (kPa) of the H2 gas is 98.89 kPa

The total pressure in a chemical reaction is the total sum of the partial pressure and the vapor pressure of the chemical substances taking place in the chemical reaction.

  • Total pressure = partial pressure of H₂ gas + vapor pressure of H₂O

∴

The vapor pressure of H₂ gas = Total pressure in the eudiometer - partial pressure of H₂O

Given that:

  • The total pressure in the eudiometer = 101.3 kPa
  • The partial pressure of H₂O = 2.41 kPa

The vapor pressure of H₂ gas = 101.3 kPa - 2.41 kPa

The vapor pressure of H₂ gas = (101.3 - 2.41) kPa

The vapor pressure of H₂ = 98.89 kPa

Therefore, we can conclude that the vapor pressure of H₂ is 98.89 kPa.

Learn more about partial pressure here:

brainly.com/question/14281129?referrer=searchResults

3 0
2 years ago
16. Which element has th17. Magnesium, Mg, tends to form a +2 ion. Which will have the larger atomic radius? Mg or Mg2+ (Explain
SashulF [63]

Answer:

Th is the symbol for element Thorium.

Mg is magnesium while Mg 2+ is magnesium Ion. Judging from periodic trends, atomic radius is one half the distance between the atoms of two covalently bonded atoms. It decreases as elevtrons are added to valence shells. That means, across the period it increases and down the group it decreases. Making Mg2+ smaller.

Electronegativity is the energy needed to take an electron in the gaseous state. Florine is more electron negative that lithium. It increases across the period and decreases down the group. Except in the Noble group.

Explanation:

6 0
4 years ago
Consider the titration of a 20.0-mL sample of 0.105 M HC2H3O2 with 0.125 M NaOH. Determine each quantity. a. the initial pH b. t
Oksi-84 [34.3K]

Answer:

Explanation:

Given that:

Concentration of HC_2H_3O_2 \  (M_1) = 0.105 M

Volume of  HC_2H_3O_2 \  (V_1) = 20.0 mL

Concentration of NaOH (M_2) = 0.125 M

The  chemical reaction can be expressed as:

HC_2H_3O_2_{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O_{(l)}

Using the ICE Table to determine the equilibrium concentrations.

          HC_2 H_3 O_2 _{(aq)} + H_2O _{(l) } \to C_2 H_3O_2^- _{(aq)} + H_3O^+_{ (aq)}

I            0.105                                     0                  0

C              -x                                         +x                +x

E            0.105 - x                                  x                  x

K_a = \dfrac{[C_2H_5O^-_2][H_3O^+]}{[HC_2H_3O_2]}

K_a = \dfrac{(x)(x)}{(0.105-x)}

Recall that the ka for HC_2H_3O_2= 1.8 \times 10^{-5}

Then;

1.8 \times 10^{-5} = \dfrac{(x)(x)}{(0.105 -x)}

1.8 \times 10^{-5} = \dfrac{x^2}{(0.105 -x)}

By solving the above mathematical expression;

x = 0.00137 M

H_3O^+ = x = 0.00137  \ M \\ \\  pH = - log [H_3O^+]  \\ \\  pH = - log ( 0.00137 )

pH = 2.86

Hence, the initial pH = 2.86

b)  To determine the volume of the added base needed to reach the equivalence point by using the formula:

M_1 V_1 = M_2 V_2

V_2= \dfrac{M_1V_1}{M_2}

V_2= \dfrac{0.105 \ M \times 20.0 \ mL }{0.125 \ M}

V_2 = 16.8 mL

Thus, the volume of the added base needed to reach the equivalence point = 16.8 mL

c) when pH of 5.0 mL of the base is added.

The Initial moles of HC_2H_3O_2 = molarity × volume

= 0.105  \ M \times 20.0 \times 10^{-3} \ L

= 2.1 \times 10^{-3}

number of moles of 5.0 NaOH = molarity × volume

number of moles of 5.0 NaOH = 0.625 \times 10^{-3}

After reacting with 5.0 mL NaOH, the number of moles is as follows:

                    HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Initial moles   2.1*10^{-3}       0.625 * 10^{-3}           0                      0

F(moles) (2.1*10^{-3} - 0.625 \times 10^{-3})    0      0.625 \times 10^{-3}         0.625 \times 10^{-3}

The pH of the solution is then calculated as follows:

pH = pKa + log \dfrac{[base]} {[acid]}

Recall that:

pKa for HC_2H_3O_2=4.74

Then; we replace the concentration with the number of moles since the volume of acid and base are equal

∴

pH = 4.74 + log \dfrac{0.625 \times 10^{-3}}{1.475 \times 10^{-3}}

pH = 4.37

Thus, the pH of the solution after the addition of 5.0 mL of NaOH = 4.37

d)

We need to understand that the pH at 1/2 of the equivalence point is equal to the concentration of the base and the acid.

Therefore;

pH = pKa = 4.74

e) pH at the equivalence point.

Here, the pH of the solution is the result of the reaction in the (C_2H_3O^-_2) with H_2O

The total volume(V) of the solution = V(acid) + V(of the base added to reach equivalence point)

The total volume(V) of the solution = 20.0 mL + 16.8 mL

The total volume(V) of the solution = 36.8 mL

Concentration of (C_2H_3O^-_2) = moles/volume

= \dfrac{2.1 \times 10^{-3} \ moles}{0.0368 \ L}

= 0.0571 M

Now, using the ICE table to determine the concentration of H_3O^+;

             C_2H_5O^-_2 _{(aq)} + H_2O_{(l)} \to HC_2H_3O_2_{(aq)} + OH^-_{(aq)}

I              0.0571                                0                      0

C              -x                                       +x                     +x

E             0.0571 - x                             x                       x

Recall that the Ka for HC_2H_3O_2 = 1.8 \times 10^{-5}

K_b = \dfrac{K_w}{K_a} = \dfrac{1.0\times 10^{-14}}{1.8 \times 10^{-5} }  \\ \\ K_b = 5.6 \times 10^{-10}

k_b = \dfrac{[ HC_2H_3O_2] [OH^-]}{[C_2H_3O^-_2]}

5.6 \times 10^{-10} = \dfrac{x *x }{0.0571 -x}

x = [OH^-] = 5.6 \times 10^{-6} \ M

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{5.6 \times 10^{-6} }

[H_3O^+] =1.77 \times 10^{-9}

pH =-log  [H_3O^+]   \\ \\  pH =-log (1.77 \times 10^{-9}) \\ \\ \mathbf{pH = 8.75 }

Hence, the pH of the solution at equivalence point = 8.75

f) The pH after 5.09 mL base is added beyond (E) point.

             HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Before                             0.0021              0.002725         0

After                                   0                     0.000625        0.0021

[OH^-] = \dfrac{0.000625 \ moles}{(0.02 + 0.0218 )  \ L}

[OH^-] = \dfrac{0.000625 \ moles}{0.0418 \ L}

[OH^-] =  0.0149 \ M

From above; we can determine the concentration of H_3O^+ by using the following method:

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{0.0149}

[H_3O^+] = 6.7 \times 10^{-13}

pH = - log [H_3O^+]

pH = -log (6.7 \times 10^{-13} )

pH = 12.17

Finally, the pH of the solution after adding 5.0 mL of NaOH beyond (E) point = 12.17

3 0
3 years ago
What is the mole ratio of iron (III) chloride (FeCl3) to zinc chloride (ZnCl2) ?
tatiyna

Answer:C

Explanation:

4 0
3 years ago
Other questions:
  • 4 outer planets in order
    12·2 answers
  • An article in a magazine denies that Earth is warming and climate change is occurring. The writer reports that this season was t
    12·1 answer
  • How do you find the average atomic mass?
    12·1 answer
  • What would the mass be, in grams, of 0.89 moles of Cl2?
    9·1 answer
  • What is the pH of a solution whose H + concentration is 4.0 10 –9?
    14·1 answer
  • How many moles are there in 7.24 grams of calcium carbonate? With work shown
    14·2 answers
  • Na+H2O=NaOH+H2<br> Balancing
    8·1 answer
  • It takes______ dekaliters to make 100 L.<br><br> A.1000<br> B.1<br> C.10<br> D.0.1
    13·1 answer
  • The element with atomic number 35 belongs to​
    8·2 answers
  • What energy is using the telephone?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!