Answer:
0.5 m/s north
Explanation:
Take east to be +x, west to be -x, north to be +y, and south to be -y.
His displacement in the x direction is:
x = 20 m − 20 m = 0 m
His displacement in the y direction is:
y = 10 m
His total displacement is therefore 10 m north.
His velocity is equal to displacement divided by time.
v = 10 m north / 20 s
v = 0.5 m/s north
The acceleration due to gravity of the planet X is 1 m/s².
The given parameters;
- height above the ground, h = 100 m
- initial velocity of the rock, u = 15 m/s
- time of motion of the rock, t = 10 s
The acceleration due to gravity is calculated as follows;

Thus, the acceleration due to gravity of the planet X is 1 m/s²
Learn more here: brainly.com/question/24564606
Answer:

Explanation:
We can find the resistance of the wire by using Ohm's law:

where
V is the voltage applied
R is the resistance
I is the current
In this problem, we know I = 6 A and V = 68 V, so we can re-arrange the equation to find the resistance of the wire:

The formula for accelerational displacement is at^2/2, so we know that 3.9t^2/2 = 200, or 3.9t^2 = 400. t =

, at = v, so