Answer:
The phase difference is 
Explanation:
From the question we are told that
The distance between the slits is
The distance to the screen is 
The wavelength is 
The distance of the wave from the central maximum is 
Generally the path difference of this waves is mathematically represented as

Here
is the angle between the the line connecting the mid-point of the slits with the screen and the line connecting the mid-point of the slits to the central maximum
This implies that

=> 
![\theta = tan ^{-1} [\frac{5*10^{-3}}{1}]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B%5Cfrac%7B5%2A10%5E%7B-3%7D%7D%7B1%7D%5D)

Substituting values into the formula for path difference
The phase difference is mathematically represented as

Substituting values

Converting to degree
the solution is subtracted by 360° in order to get the actual angle
Answer:
You input potential energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this is kind of potential energy is specifically called elastic potential energy.
Answer:
Mechanical advantage = 15
Explanation:
Given the following data;
Output force = 3000N
Input force = 200N
To find the mechanical advantage;
Mechanical advantage = output force/input force
Substituting into the equation, we have
Mechanical advantage = 3000/200
Mechanical advantage = 15
In what may be one of the most remarkable coincidences in
all of physical science, the tangential component of circular
motion points along the tangent to the circle at every point.
The object on a circular path is moving in that exact direction
at the instant when it is located at that point in the circle. The
centripetal force ... pointing toward the center of the circle ...
is the force that bends the path of the object away from a straight
line, toward the next point on the circle. If the centripetal force
were to suddenly disappear, the object would continue moving
from that point in a straight line, along the tangent and away from
the circle.