Answer:
C
Explanation:
looking at a periodic table X is fluorine and Y is potassium
Fluorine is in group 7 and forms a 1- charge (which gains electrons) and potassium is in group 1 and forms a 1+ charge (which loses electrons)
Fluorine (X) has an electronic structure of 2,7 and needs to gain an electron from Potassium (Y) to have a full outer shell and potassium has an electronic structure of 2,8,8,1 so needs to lose an electron to have a full outer shell as well. This means that the electron that potassium (Y) has lost is given away to fluorine (X), so both elements become stable.
This is known as ionic bonding where metals (like potassium) lose electrons and non-metals (like fluorine) gain electrons to become more stable, forming ions
Any further clarification let me know
Answer:
Why do we all not know the answer to this on the practical
Explanation:
<span>Answer:
Correct answers are- Electron affinity decreases; Cl has 7 valence electrons but Na has only 1. So Na is going to lose its e, Cl is going to gain an e.</span>
Answer:
There are many errors possible while titrating the acid of an unknown concentration with a base like NaOH.
Main error that leads to the error in results is misreading of the end point volume .
End point is when the reaction between the analyte and solution of known concentration has stopped .
Sometimes Burette is not straight enough to read the volume of the end point. One way to misread the volume of burette is by looking at the burette volume at an angle .
From above , volume seems to be higher. Indicators are used to indicate the color change of the reaction. In Acid-Base titrations , indicators first lighten up then changes its color.
So, error may have occurred in wrongly judging of the end point by color change of the indicator .
Answer:
0.025536g
Explanation:
no. of mole = mass/Mr
mass = Mr × no. of mole
= [23 + 1 + 12 + 3(16)] × 3.04×10^-4
= 0.025536g
= 0.0255g (3 significant figures)