Answer:
See explanation
Explanation:
According to the Journal of Chemical Education, Volume 80, No.8 (2003); "The first ionization energy of bismuth appears to be anomalous......It has been claimed that spin–
orbit coupling by the Russell–Saunders scheme would lower the ground state of Bi+ ..."
However, the involvement of d and f orbitals in Bi and Po implies that the outermost orbitals are poorly screened hence the drop between nitrogen and oxygen is not observed between Bi and Po.
The same argument could be extended to explain the reason why there not a corresponding drop between Ba and Tl is the sixth period even though they are in the same group as Be and B.
Says here the answer is <span>dipole-dipole</span>
Polar covalent bonds (because hydrogen and oxygen form polar bonds and are both nonmetals so it's covalent) and hydrogen bonds (because the water molecules are attracted to each other with partial charges, causing specific properties like surface tension).
So in my very bad drawing that I attached in case you're more a visual learner, the d- and d+ show the partial charges of hydrogen and oxygen (making it polar, as the electrons in the bond are more shifted towards oxygen, which is why oxygen has a negative sign) and the yellow dotted line show the hydrogen bonds.
Answer:
I can't say that it is definitely write.
HHH
H-C-C-C