Answer:
False
Explanation:
It's kinetic energy would change to four times the amount.
I'd go with electricity source. Good luck!!
Answer:
Solution is in explanation
Explanation:
part a)
For normalization we have
![\int_{0}^{\infty }f(x)dx=1\\\\\therefore \int_{0}^{\infty }ae^{-kx}dx=1\\\\\Rightarrow a\int_{0}^{\infty }e^{-kx}dx=1\\\\\frac{a}{-k}[\frac{1}{e^{kx}}]_{0}^{\infty }=1\\\\\frac{a}{-k}[0-1]=1\\\\\therefore a=k](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Df%28x%29dx%3D1%5C%5C%5C%5C%5Ctherefore%20%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dae%5E%7B-kx%7Ddx%3D1%5C%5C%5C%5C%5CRightarrow%20a%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-kx%7Ddx%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7B-k%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bkx%7D%7D%5D_%7B0%7D%5E%7B%5Cinfty%20%7D%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7B-k%7D%5B0-1%5D%3D1%5C%5C%5C%5C%5Ctherefore%20a%3Dk)
Part b)
![\int_{0}^{L }f(x)dx=1\\\\\therefore Re(\int_{0}^{L }ae^{-ikx}dx)=1\\\\\Rightarrow Re(a\int_{0}^{L }e^{-ikx}dx)=1\\\\\therefore Re(\frac{a}{-ik}[\frac{1}{e^{ikx}}]_{0}^{L})=1\\\\\Rightarrow Re(\frac{a}{-ik}(e^{-ikL}-1))=1\\\\\frac{a}{k}Re(\frac{1}{-i}(cos(-kL)+isin(-kL)-1))=1](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7BL%20%7Df%28x%29dx%3D1%5C%5C%5C%5C%5Ctherefore%20Re%28%5Cint_%7B0%7D%5E%7BL%20%7Dae%5E%7B-ikx%7Ddx%29%3D1%5C%5C%5C%5C%5CRightarrow%20Re%28a%5Cint_%7B0%7D%5E%7BL%20%7De%5E%7B-ikx%7Ddx%29%3D1%5C%5C%5C%5C%5Ctherefore%20Re%28%5Cfrac%7Ba%7D%7B-ik%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bikx%7D%7D%5D_%7B0%7D%5E%7BL%7D%29%3D1%5C%5C%5C%5C%5CRightarrow%20Re%28%5Cfrac%7Ba%7D%7B-ik%7D%28e%5E%7B-ikL%7D-1%29%29%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7Bk%7DRe%28%5Cfrac%7B1%7D%7B-i%7D%28cos%28-kL%29%2Bisin%28-kL%29-1%29%29%3D1)

Answer:
time to fall is 3.914 seconds
Explanation:
given data
half distance time = 1.50 s
to find out
find the total time of its fall
solution
we consider here s is total distance
so equation of motion for distance
s = ut + 0.5 × at² .........1
here s is distance and u is initial speed that is 0 and a is acceleration due to gravity = 9.8 and t is time
so for last 1.5 sec distance is 0.5 of its distance so equation will be
0.5 s = 0 + 0.5 × (9.8) × ( t - 1.5)² ........................1
and
velocity will be
v = u + at
so velocity v = 0+ 9.8(t-1.5) ..................2
so first we find time
0.5 × (9.8) × ( t - 1.5)² = 9.8(t-1.5) + 0.5 ( 9.8)
solve and we get t
t = 3.37 s
so time to fall is 3.914 seconds