The electromagnetic spectrum includes a continuous spectrum of wavelengths that include:
Radio waves, microwaves, infrared light, visible, ultraviolet, X-rays, gamma rays
The wavelength decreases from radio waves to gamma rays, whereas the energy increases along the same direction.
In the given example, radio waves have a lower energy and higher wavelength than visible light. The latter can be perceived by the human eye, whereas radio waves are not visible to the human eye.
1) They have colors = visible light
2) They can travel in a vacuum = both
3) They have energy = both
4) They’re used to learn about dust and gas clouds = radio waves
5) They’re used to find the temperature of stars = visible light
6)They’re invisible = radio waves
-- You and your partner both get the same job to do:
Each of you gets a pallet of bricks, and you have to
put the bricks up on the bed of a truck, by hand.
Both pallets have the same number of bricks.
The pallet is way too heavy to lift, so you both cut the bands
that hold the bricks, and you lift the bricks from the pallet onto
the truck, by hand, two or three or four bricks at a time.
-- You get your pallet of bricks onto the truck in 45 minutes.
-- Your partner gets his pallet of bricks onto the truck in 3 days.
-- Work = (force) times (distance).
You and your partner both lifted the same amount of weight
up to the same height. You both did the same amount of work.
-- Power = (work done) divided by (time it takes to do the work) .
Your partner took roughly 96 times as long as you took
to do the same amount of work.
You did it faster. He did it slower.
You produced more power. He produced less power.
Answer:
Explanation:
The law of effect given by Edward Thorndike explains the behavior of child given in the problem . The effect which gives pleasure and satisfying effect are likely to be learnt easily and the effect which creates bad taste are likely to be forgotten easily . actions producing feel good effect are likely to be repeated in future .
Answer:
It moderates the temperature of coastal areas. The cool waters brought into warm areas temper the climate as well as the warm waters that enter a cool area there by moderating temperatures and climates.
Explanation:
One way that the world’s ocean affects weather and climate is by playing an important role in keeping our planet warm. The majority of radiation from the sun is absorbed by the ocean, particularly in tropical waters around the equator, where the ocean acts like a massive, heat-retaining solar panel. Land areas also absorb some sunlight, and the atmosphere helps to retain heat that would otherwise quickly radiate into space after sunset.
The ocean doesn't just store solar radiation; it also helps to distribute heat around the globe. When water molecules are heated, they exchange freely with the air in a process called evaporation. Ocean water is constantly evaporating, increasing the temperature and humidity of the surrounding air to form rain and storms that are then carried by trade winds. In fact, almost all rain that falls on land starts off in the ocean. The tropics are particularly rainy because heat absorption, and thus ocean evaporation, is highest in this area.
Outside of Earth’s equatorial areas, weather patterns are driven largely by ocean currents. Currents are movements of ocean water in a continuous flow, created largely by surface winds but also partly by temperature and salinity gradients, Earth’s rotation, and tides. Major current systems typically flow clockwise in the northern hemisphere and counterclockwise in the southern hemisphere, in circular patterns that often trace the coastlines.
Ocean currents act much like a conveyor belt, transporting warm water and precipitation from the equator toward the poles and cold water from the poles back to the tropics. Thus, ocean currents regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth’s surface. Without currents in the ocean, regional temperatures would be more extreme—super hot at the equator and frigid toward the poles—and much less of Earth’s land would be habitable.
Answer:
a. 9.8 m/s2.
Explanation:
The acceleration depends on the force of gravity. It's independent of the velocity of the ball.