Answer:
pH = 11.30
Explanation:
pH is defined as -log [H⁺]
To find [H⁺] from [OH⁻] -Concentration of hydroxide ion-, we must use the equilibrium of water:
H₂O(l) ⇄ H⁺(aq) + OH⁻(aq)
Keq = 1x10⁻¹⁴ = [H⁺] [OH⁻]
[H⁺] = 1x10⁻¹⁴ / [OH⁻]
[H⁺] = 1x10⁻¹⁴ / 2x10⁻³M
[H⁺] = 5x10⁻¹²M
pH = -log (5x10⁻¹²M)
<h3>pH = 11.30</h3>
Answer:
- Mass of NaH₂PO₄·H₂O = 8.542 g
- Mass of Na₂HPO₄ = 5.410 g
Explanation:
Keeping in mind the equilibrium:
H₂PO₄⁻ ↔ HPO₄⁻² + H⁺
We use the Henderson-Hasselbalch equation (H-H):
pH = pka + ![log\frac{[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=log%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
For this problem [A⁻] = [HPO₄⁻²] and [HA] = [H₂PO₄⁻]
From literature we know that pka = 7.21, from the problem we know that pH=7.00 and that
[HPO₄⁻²] + [H₂PO₄⁻] = 0.100 M
From this equation we can <u>express [H₂PO₄⁻] in terms of [HPO₄⁻²]</u>:
[H₂PO₄⁻] = 0.100 M - [HPO₄⁻²]
And then replace [H₂PO₄⁻] in the H-H equation, <u>in order to calculate [HPO₄⁻²]</u>:
![7.00=7.21+log\frac{[HPO4^{-2}] }{0.100 M-[HPO4^{-2}]} \\-0.21=log\frac{[HPO4^{-2}] }{0.100 M-[HPO4^{-2}]}\\10^{-0.21} =\frac{[HPO4^{-2}] }{0.100 M-[HPO4^{-2}]}\\0.616*(0.100M-[HPO4^{-2}])=[HPO4^{-2}]\\0.0616 M = 1.616*[HPO4^{-2}]\\0.03812 M =[HPO4^{-2}]](https://tex.z-dn.net/?f=7.00%3D7.21%2Blog%5Cfrac%7B%5BHPO4%5E%7B-2%7D%5D%20%7D%7B0.100%20M-%5BHPO4%5E%7B-2%7D%5D%7D%20%5C%5C-0.21%3Dlog%5Cfrac%7B%5BHPO4%5E%7B-2%7D%5D%20%7D%7B0.100%20M-%5BHPO4%5E%7B-2%7D%5D%7D%5C%5C10%5E%7B-0.21%7D%20%3D%5Cfrac%7B%5BHPO4%5E%7B-2%7D%5D%20%7D%7B0.100%20M-%5BHPO4%5E%7B-2%7D%5D%7D%5C%5C0.616%2A%280.100M-%5BHPO4%5E%7B-2%7D%5D%29%3D%5BHPO4%5E%7B-2%7D%5D%5C%5C0.0616%20M%20%3D%201.616%2A%5BHPO4%5E%7B-2%7D%5D%5C%5C0.03812%20M%20%3D%5BHPO4%5E%7B-2%7D%5D)
With the value of [H₂PO₄⁻],<u> we calculate [HPO₄⁻²]</u>:
[HPO₄⁻²] + 0.0381 M = 0.100 M
[HPO₄⁻²] = 0.0619 M
Finally, using the concentrations, the volume, and the molecular weights; we can calculate the weight of each substance:
- Mass of NaH₂PO₄·H₂O = 0.0619 M * 1 L * 138 g/mol = 8.542 g
- Mass of Na₂HPO₄ = 0.0381 M * 1 L * 142 g/mol = 5.410 g
Answer:

Explanation:
Hello!
In this case, considering the balanced chemical reaction:
Cl₂ + 2LiI ⇒ 2LiCl + I₂
We can see there is a 1:1 mole ratio between the produced iodine and the used chlorine, thus, we infer that the number of molecules of iodine given those of chlorine turn out:

Best regards!
Explanation:
The pH of the solution is 9.63 ± 0.03.
we know that
pH= -log[H+]
⇒[H+] =
=
= 
Now to find absolute error we use the formula
Absolute error/[H+] =ln10(uncertainity)
Absolute error = ln10×[H+] ×0.03

=
Valence electrons hope this helps