<u>Answer:</u>
In order from lowest urgency to highest, the sequence which properly ranks the product categories issued by the National Weather Service are as follows:
B- Outlook, Watch, Advisory, Warning.
<u>Explanation:</u>
An outlook for a hazardous weather describes the potential hazardous weather of concern in day 1 through 7. There are total two segments of the outlook, one for the marine zones and the second for the land based zones.
A watch is issued when there is the possibility of hazardous weather within 48 hours, it does not guarantee that a hazardous weather is going to come, it just reminds the possibilities of any such weather to come.
Advisory comes third in the urgency ranking, we can explain this through an example: a winter weather advisory may be issued for amount of freezing rain or when there are chance of 2 to 4 inches of snow. And, in winter weather, an warning may be issued when there is one fourth inch or more of ice accumulation.
Answer:
Changes in the object's momentum (answer D)
Explanation:
A net force will cause an object to change its velocity, and that will affect the object's momentum, which is defined by the product of the object's mass times its velocity.
So, select the last option (D) in the given list.
Answer:
A hypothesis for the period of a pendulum is:
"The period of the pendulum varies with its length"
Explanation:
A hypothesis for the period of a pendulum is:
"The period of the pendulum varies with its length"
To test this hypothesis we can carry out a measurement of a simple pendulum keeping the angle fixed, in general the angle used is about 5º since when placing this value in radiand and the sine of this angle they differ little <5%. therefore measured the time of some oscillations, for example about 10 oscillations, changing the length of the pendulum to test the hypothesis.
If the hypothesis and the model used is correct, the relationship to be tested is
T² =(4π² /g) L
by making a graph of the period squared against the length if obtaining, os a line, the hypothesis is tested.
Objects in space follow the laws or rules of physics, just like objects on Earth do. Things in space have inertia. That is, they travel in a straight line unless there is a force that makes them stop or change. The movement of things in space is influenced by gravity.