They have pure elements or a verity of compounds inside.
Answer:
9.22 s
Explanation:
One-quarter of a turn away is 1/4 of 2π, or π/2 which is approximately 1.57 rad
Let t (seconds) be the time it takes for the child to catch up with the horse. We would have the following equation of motion for the child and the horse:
For the child: 
For the horse: 
For the child to catch up with the horse, they must cover the same angular distance within the same time t:



t = 25.05 or t = 9.22
Since we are looking for the shortest time we will pick t = 9.22 s
First, let's put 22 km/h in m/s:

Now the radial force required to keep an object of mass m, moving in circular motion around a radius R, is given by

The force of friction is given by the normal force (here, just the weight, mg) times the static coefficient of friction:

Notice we don't use the kinetic coefficient even though the bike is moving. This is because when the tires meet the road they are momentarily stationary with the road surface. Otherwise the bike is skidding.
Now set these equal, since friction is the only thing providing the ability to accelerate (turn) without skidding off the road in a line tangent to the curve:
Answer:
1977.696 J
Explanation:
Given;
Weight of the box = 28.0 kg
Force applied by the boy = 230 N
angle between the horizontal and the force = 35°
Therefore,
the horizontal component of the force = 230 × cosθ
= 230 × cos 35°
= 188.405 N
Coefficient of kinetic friction, μ = 0.24
Force by friction, f = μN
here,
N = Normal force = Mass × acceleration due to gravity
or
N = 28 × 9.81 = 274.68 N
therefore,
f = 0.24 × 274.68
or
f = 65.9232 N
Now,
work done by the boy, W₁ = 188.405 N × Displacement
= 188.405 N × 30
= 5652.15 J
and,
the
work done by the friction, W₂ = - 65.9232 N × Displacement
= - 65.9232 N × 30 m
= - 1977.696 J
[ since the friction force acts opposite to the direction of motion, therefore the workdone will be negative]
Answer:
it's because some versions have more steps and others have less