The energy of a light wave is calculated using the formula
E = hc/λ
h is the Planck's constant
c is the speed of light
λ is the wavelength
For the ir-c, the range is
<span>6.63 x 10^-34 (3x10^8) / 3000 = 6.63 x 10 ^-29 J
</span>6.63 x 10^-34 (3x10^8) / 1000000 = 1.99 x 10^-31 J
For the ir-a, the range is
6.63 x 10^-34 (3x10^8) / 700 = 2.84 x 10^-28 J
6.63 x 10^-34 (3x10^8) / 1400 = 1.42 x 10^-28 J
C.
Newton’s Second Law is F=ma (force is equal to the mass multiplied by acceleration), however, the equation can be rearranged to isolate and calculate mass from force over acceleration. Therefore, m=F/a
The correct answers among all the other choices are D.) reflection from wet asphalt and E.) refraction from a water surface. These materials would result in horizontally polarized light. Thank you for posting your question. I hope this answer helped you. Let me know if you need more help.
Answer:
The mass of the massive object at the center of the Milky Way galaxy is 
Explanation:
Given that,
Diameter = 10 light year
Orbital speed = 180 km/s
Suppose determine the mass of the massive object at the center of the Milky Way galaxy.
Take the distance of one light year to be 9.461×10¹⁵ m. I was able to get this it is 4.26×10³⁷ kg.
We need to calculate the radius of the orbit
Using formula of radius



We need to calculate the mass of the massive object at the center of the Milky Way galaxy
Using formula of mass

Put the value into the formula


Hence, The mass of the massive object at the center of the Milky Way galaxy is 