<h2>
Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>
Explanation:
The half-life
of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13: 
beryllium-15: 
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:

Where
is the amount we want to find:


Finally:

Therefore:
The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.
Answer:

Explanation:
The rotation rate of the man is:



The resultant rotation rate of the system is computed from the Principle of Angular Momentum Conservation:
![(90\,kg)\cdot (5\,m)^{2}\cdot (0.16\,\frac{rad}{s} ) = [(90\,kg)\cdot (5\,m)^{2}+20000\,kg\cdot m^{2}]\cdot \omega](https://tex.z-dn.net/?f=%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%5Ccdot%20%280.16%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%29%20%3D%20%5B%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%2B20000%5C%2Ckg%5Ccdot%20m%5E%7B2%7D%5D%5Ccdot%20%5Comega)
The final angular speed is:

That’s an atom
I hope that helped
It would be rock by erosion bc the rocks erode to form a volcano