Answer:
F = 7.2N
Explanation:
The resultant of two forces acting at some angle is given by using the vector addition as given below
F =√F1^2+F2^2+2F1F2cosθ
Where F1 = 6N and F2 = 8N
θ = 240°
Substituting the values into the equation above
F = √ 6^2+8^2+ 2(6×8)cos240
F =√ 36+64+96cos240
F = √ 100+96 ×-0.5
F = √ 100-48
F = √ 52
F = 7.211
F = 7.2N
Answer:
statements <em><u>2, 3, 4, and 7</u></em> are true
Explanation:
Answer:
Length = 2.32 m
Explanation:
Let the length required be 'L'.
Given:
Resistance of the resistor (R) = 3.7 Ω
Radius of the rod (r) = 1.9 mm = 0.0019 m [1 mm = 0.001 m]
Resistivity of the material of rod (ρ) = 
First, let us find the area of the circular rod.
Area is given as:

Now, the resistance of the material is given by the formula:

Express this in terms of 'L'. This gives,

Now, plug in the given values and solve for length 'L'. This gives,

Therefore, the length of the material required to make a resistor of 3.7 Ω is 2.32 m.
Answer:
For the first one, its B) cities B and C
I'm not so sure, but I hope this helps.