Answer:
1.24 C
Explanation:
We know that the magnitude of the induced emf, ε = -ΔΦ/Δt where Φ = magnetic flux and t = time. Now ΔΦ = Δ(AB) = AΔB where A = area of coil and change in magnetic flux = Now ΔB = 0 - 0.750 T = -0.750 T, since the magnetic field changes from 0.750 T to 0 T.
The are , A of the circular loop is πD²/4 where D = diameter of circular loop = 16.7 cm = 16.7 × 10⁻²m
So, ε = -ΔΦ/Δt = -AΔB/Δt= -πD²/4 × -0.750 T/Δt = 0.750πD²/4Δt.
Also, the induced emf ε = iR where i = current in the coil and R = resistance of wire = ρl/A where ρ = resistivity of copper wire =1.68 × 10⁻⁸ Ωm, l = length of wire = πD and A = cross-sectional area of wire = πd²/4 where d = diameter of wire = 2.25 mm = 2.25 × 10⁻³ m.
So, ε = iR = iρl/A = iρπD/πd²/4 = 4iρD/d²
So, 4iρD/d² = 0.750πD²/4Δt.
iΔt = 0.750πD²/4 ÷ 4iρD/d²
iΔt = 0.750πD²d²/16ρ.
So the charge Q = iΔt
= 0.750π(Dd)²/16ρ
= 0.750π(16.7 × 10⁻²m 2.25 × 10⁻³ m)²/16(1.68 × 10⁻⁸ Ωm)
= 123.76 × 10⁻² C
= 1.2376 C
≅ 1.24 C
Energy is transferred in a wave
Energy is transferred, but mass is not.
To solve this problem we will apply the concepts of linear mass density, and the expression of the wavelength with which we can find the frequency of the string. With these values it will be possible to find the voltage value. Later we will apply concepts related to harmonic waves in order to find the fundamental frequency.
The linear mass density is given as,



The expression for the wavelength of the standing wave for the second overtone is

Replacing we have


The frequency of the sound wave is



Now the velocity of the wave would be



The expression that relates the velocity of the wave, tension on the string and linear mass density is





The tension in the string is 547N
PART B) The relation between the fundamental frequency and the
harmonic frequency is

Overtone is the resonant frequency above the fundamental frequency. The second overtone is the second resonant frequency after the fundamental frequency. Therefore

Then,

Rearranging to find the fundamental frequency



Answer:
16.25 m
Explanation:
we know that the equation pf parabola

from bellow figure the coordinate of parabola is (600,65) that is y=600 and x=65
putting the the value of y and x in the equation of parabola

k=0.0001805
now the equation is

we have to find the value of y at x=300m
so 
y=16.25 m