1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
3 years ago
5

The magnetic field perpendicular to a single 16.7-cm-diameter circular loop of copper wire decreases uniformly from 0.750 T to z

ero.
If the wire is 2.25 mm in diameter, how much charge moves past a point in the coil during this operation? The resistivity of copper is 1.68Ã10â8Ωâm.
Express your answer to three significant figures and include the appropriate units.
Physics
1 answer:
sammy [17]3 years ago
4 0

Answer:

1.24 C

Explanation:

We know that the magnitude of the induced emf, ε = -ΔΦ/Δt where Φ = magnetic flux and t = time. Now ΔΦ = Δ(AB) = AΔB where A = area of coil and change in magnetic flux = Now ΔB = 0 - 0.750 T = -0.750 T, since the magnetic field changes from 0.750 T to 0 T.

The are , A of the circular loop is πD²/4 where D = diameter of circular loop = 16.7 cm = 16.7 × 10⁻²m

So, ε = -ΔΦ/Δt = -AΔB/Δt= -πD²/4 × -0.750 T/Δt = 0.750πD²/4Δt.

Also, the induced emf ε = iR where i = current in the coil and R = resistance of wire = ρl/A where ρ = resistivity of copper wire =1.68 × 10⁻⁸ Ωm, l = length of wire = πD and A = cross-sectional area of wire = πd²/4 where d = diameter of wire = 2.25 mm = 2.25 × 10⁻³ m.

So, ε = iR = iρl/A = iρπD/πd²/4 = 4iρD/d²

So,  4iρD/d² = 0.750πD²/4Δt.

iΔt = 0.750πD²/4 ÷ 4iρD/d²

iΔt = 0.750πD²d²/16ρ.

So the charge Q = iΔt

= 0.750π(Dd)²/16ρ

= 0.750π(16.7 × 10⁻²m 2.25 × 10⁻³ m)²/16(1.68 × 10⁻⁸ Ωm)

= 123.76 × 10⁻² C

= 1.2376 C

≅ 1.24 C

You might be interested in
If the weight of a submerged object is equal to the buoyant force, what net force acts upon the object?
Y_Kistochka [10]

Answer:

A

Explanation:

The weight is acting downwards where as the buoyant force acting upwards (opposite) direction with equal amount of force. so the opposite forces cancel out each other (because of the force amount being equal) and no net force is acting on the object.

Hope i have helped you

Thanks.

7 0
3 years ago
An 67-kg jogger is heading due east at a speed of 2.3 m/s. A 70-kg jogger is heading 61 ° north of east at a speed of 1.3 m/s. F
ololo11 [35]

Answer

given,

mass of jogger  = 67 kg

speed in east direction = 2.3 m/s

mass of jogger 2 = 70 Kg

speed  = 1.3 m/s  in  61 ° north of east.

jogger one

P_1 = m_1 v_1 \hat{i}

P_1 = 67 \times 2.3\hat{i}

P_1 = 154.1 \hat{i}

P_2 = m_2 v_2 \hat{i} +m_2 v_2 \hat{j}

P_2 = 70\times v cos \theta \hat{i} +70\times v sin \theta \hat{j}

P_2 = 70\times 1.3 cos 61^0 \hat{i} +70\times 1.3 sin 61^0\hat{j}

P_2 = 44.12\hat{i} +79.59\hat{j}

now

P = P₁ + P₂

P = 198.22 \hat{i} +79.59 \hat{j}

magnitude

P = \sqrt{198.22^2 + 79.59^2}

P =213.60 kg.m/s

\theta = tan^{-1}\dfrac{79.59}{198.22}

\theta = 21.87

the angle is \theta = 21.87 north of east

7 0
3 years ago
A book that weighs 19 Newtons sits on a table. With what force
iVinArrow [24]

Answer:

We know there's two forces acting on a book while it sits on a table:the force of gravity pulling it down, and the normal force of the table acting upward on the book. The book isn't accelerating while it sits there. That's because the weight of the book is being counteracted by the normal force of the table.

Explanation:

There are two forces acting upon the book. One force - the Earth's gravitational pull - exerts a downward force. The other force - the push of the table on the book (sometimes referred to as a normal force) - pushes upward on the book.

5 0
3 years ago
A basketball rolls without slipping (starting from rest) down a ramp. If the ramp is sloped by an angle of 4 degrees above the h
slavikrds [6]

Answer:

11.7 m/s

Explanation:

To find its speed, we first find the acceleration of the center of mass of a rolling object is given by

a = gsinθ/(1 + I/MR²) where θ = angle of slope = 4, I = moment of inertia of basketball = 2/3MR²

a = 9.8 m/s²sin4(1 + 2/3MR²/MR²)

  = 9.8 m/s²sin4(1 + 2/3)

  = 9.8 m/s²sin4 × (5/3)

  = 1.14 m/s²

To find its speed v after rolling for 60 m, we use

v² = u² + 2as where u = initial speed = 0 (since it starts from rest), s = 60 m

v = √(u² + 2as) = √(0² + 2 × 1.14 m/s × 60 m) = √136.8 = 11.7 m/s

4 0
3 years ago
Mass m, moving at speed 2v, approaches mass 4m, moving at speed v. The two collide elastically head-on. Part A Find the subseque
meriva
Thank you for posting your question here at brainly. A mass of m moves with 2V towards in the opposite direction of a mass, 4m moving at a speed of V, the speed of m was 2/5V and the mass of 4m was 7.5V. I hope it helps.
4 0
3 years ago
Read 2 more answers
Other questions:
  • A 50.0kg box is being pushed along a horizontal surface by a force of 250N directed 28 degrees below the horizontal. The coeffic
    13·1 answer
  • Consider the system shown in fig. 6-26. the rope and pulley have negligible mass, and the pulley is frictionless. the coefficien
    8·1 answer
  • A man pulls a wagon with a handle that is at an angle of 42° with the ground. If the man pulls with 330 N of force, how much for
    9·2 answers
  • The primary colors of light are?
    10·2 answers
  • Each graph has an x- and y-axis except
    13·1 answer
  • What is the acceleration of this object? The object's mass is 60 kg.
    15·2 answers
  • Describe the transformation of mechanical energy in a ball when it is thrown straight up and then comes back down
    5·1 answer
  • Explain in detail what energy transfers happen when you cook sausages on a camp fire burning wood?
    10·1 answer
  • Which type of wave needs a medium to travel?
    14·2 answers
  • Standing 38.6 m away from a rock wall, you yell. How much time in seconds will it take you to hear your echo to two significant
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!