Answer:
I = 4.189 mA V = 0.338 V
Explanation:
In order to do this, we need to apply the following expression:
I = Is[exp^(qV/kT) - 1] (1)
However, as the junction of the diode is illuminated, the above expression changes to:
I = Iopt + Is[exp^(qV/kT) - 1] (2)
Now, as the shunt resistance becomes infinite while the current becomes zero, we can say that the leakage current is small, and so:
I ≅ Iopt
Therefore:
I ≅ I₀Aλq / hc (3)
Where:
I₀A = Area of diode (radiation)
λ: wavelength
q: electron charge (1.6x10⁻¹⁹ C)
h: Planck constant (6.62x10⁻³⁴ m² kg/s)
c: speed of light (3x10⁸ m/s)
Replacing all these values, we can get the current:
I = (8x10⁻³) * (0.65x10⁻⁶) * (1.6x10⁻¹⁹) / (6.62x10⁻³⁴) * (3x10⁸)
I = 4.189x10⁻³ A or 4.189 mA
Now that we have the current, we just need to replace this value into the expression (2) and solve for the voltage:
I = Is[exp^(qV/kT) - 1]
k: boltzman constant (1.38x10⁻²³ J/K)
4.189x10⁻³ = 9x10⁻⁹ [exp(1.6x10⁻¹⁹ V / 1.38x10⁻²³ * 300) - 1]
4.189x10⁻³ / 9x10⁻⁹ = [exp(38.65V) - 1]
465,444.44 + 1 = exp(38.65V)
ln(465,445.44) = 38.65V
13.0508 = 38.65V
V = 0.338 V