If you know the real modulus of the cable (Y), the length, and the area (based on the radius), you can compute the spring constant, k = AE/L. Then, if you know the force used, you can compute the displacement, using F = kd, or d = F / k = FL/(AE). Our answer should work out to units of length. So,
d = 803 N * 9.06 m / [pi*(0.574 cm)^2 * 2.0 x 10^11 N/m^2]
d = 3.5 x 10^-8 Nm^3 / (cm^2 * N)
d = 3.5 x 10^-8 m^3 / cm^2 * (100 cm / 1 m)^2
d = 3.5 x 10^-4 m
Here volume of gas is not given so question is solved assuming volume as 1 L.
The number of moles of 1 L gas present in the sealed container at a
pressure of 125 kPa at 25 degrees Celsius is 0.0067 moles.
The ideal gas law equation can be written as
PV = nR T
Here
P is the pressure of the gas in atm
V is the volume it occupies in L
n is the number of moles of gas present in the sample
R is the universal gas constant, equal to 0.0821 atm L/ mol K
T is the absolute temperature of the gas in Kelvin
Now, it's important to realize that the units you have for the volume, pressure, and temperature of the gas must match the unit used in the expression of the universal gas constant.
So
P = 125 kPa
1 atm = 760 kPa
P = 125/760 = 0.1644 atm
T = 25 degree celsius = 25 +273 = 298 K
Taking V = 1 L
So
n = PV/RT
n = 0.1644 x 1 / 0.0821 x 298
n = 0.0067 moles
To learn more about the ideal gas law, please click on the link brainly.com/question/128737528
#SPJ9
Answer:
D) Radiation
Explanation:
Nuclear fusion is the combining of atomic nuclei to produce energy and radiation.
Answer:
1×10^2
Explanation:
Move the decimal so there is one non-zero digit to the left of the decimal point. The number of decimal places you move will be the exponent on the 10. If the decimal is being moved to the right, the exponent will be negative. If the decimal is being moved to the left, the exponent will be positive.
Answer:
speed and velocity, c would be my guess