Answer:
E = (-3.61^i+1.02^j) N/C
magnitude E = 3.75N/C
Explanation:
In order to calculate the electric field at the point P, you use the following formula, which takes into account the components of the electric field vector:
(1)
Where the minus sign means that the electric field point to the charge.
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q = -4.28 pC = -4.28*10^-12C
r: distance to the charge from the point P
The point P is at the point (0,9.83mm)
θ: angle between the electric field vector and the x-axis
The angle is calculated as follow:

The distance r is:

You replace the values of all parameters in the equation (1):
![\vec{E}=(8.98*10^9Nm^2/C^2)\frac{4.28*10^{-12}C}{(10.21*10^{-3}m)}[-cos(15.84\°)\hat{i}+sin(15.84\°)\hat{j}]\\\\\vec{E}=(-3.61\hat{i}+1.02\hat{j})\frac{N}{C}\\\\|\vec{E}|=\sqrt{(3.61)^2+(1.02)^2}\frac{N}{C}=3.75\frac{N}{C}](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5Cfrac%7B4.28%2A10%5E%7B-12%7DC%7D%7B%2810.21%2A10%5E%7B-3%7Dm%29%7D%5B-cos%2815.84%5C%C2%B0%29%5Chat%7Bi%7D%2Bsin%2815.84%5C%C2%B0%29%5Chat%7Bj%7D%5D%5C%5C%5C%5C%5Cvec%7BE%7D%3D%28-3.61%5Chat%7Bi%7D%2B1.02%5Chat%7Bj%7D%29%5Cfrac%7BN%7D%7BC%7D%5C%5C%5C%5C%7C%5Cvec%7BE%7D%7C%3D%5Csqrt%7B%283.61%29%5E2%2B%281.02%29%5E2%7D%5Cfrac%7BN%7D%7BC%7D%3D3.75%5Cfrac%7BN%7D%7BC%7D)
The electric field is E = (-3.61^i+1.02^j) N/C with a a magnitude of 3.75N/C
The answer is D) Velocity
Answer:

Explanation:
Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

Due to the definition of cross product, the magnitude of the torque is given by:

Where
is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when
is equal to one, solving for r:

You can try recalling and rehearsing information about the memory.
Heat required to change the phase of ice is given by
Q = m* L
here
m = mass of ice
L = latent heat of fusion
now we have
m = 45 kg
L = 334 KJ/kg
now by using above formula


In KJ we can convert this as

so the correct answer is D option