C. Should be the answer it worked for me
From the equations of linear motion,
v² = u² + 2as where v is the final velocity, u is the initial velocity and a is the gravitational acceleration, and s is the displacement,
Thus, v² = u² -2gs, but v=0
hence, u² = 2gs
= 2×9.81×0.43
= 8.4366
u = √8.4366
=2.905 m/s
Hence the initial velocity is 2.905 m/s
Then using the equation v= u +gt .
Therefore, v = u -gt. (-g because the player is jumping against the gravity)
but, v = 0
Thus, u= gt
Hence, t = u/g
= 2.905/9.81
= 0.296 seconds
Answer:
The length of the tube is 3.92 m.
Explanation:
Given that,
Electric potential = 100 MV
Length = 4 m
Energy = 100 MeV
We need to calculate the value of
Using formula of relativistic energy
Put the value into the formula
Here,
We need to calculate the length
Using formula of length
Put the value into the formula
Hence, The length of the tube is 3.92 m.
Answer:
Part a: When the road is level, the minimum stopping sight distance is 563.36 ft.
Part b: When the road has a maximum grade of 4%, the minimum stopping sight distance is 528.19 ft.
Explanation:
Part a
When Road is Level
The stopping sight distance is given as
Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is this case is 0 as the road is level
Substituting values
So the minimum stopping sight distance is 563.36 ft.
Part b
When Road has a maximum grade of 4%
The stopping sight distance is given as
Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is given as 4% now this can be either downgrade or upgrade
For upgrade of 4%, Substituting values
<em>So the minimum stopping sight distance for a road with 4% upgrade is 528.19 ft.</em>
For downgrade of 4%, Substituting values
<em>So the minimum stopping sight distance for a road with 4% downgrade is 607.59 ft.</em>
As the minimum distance is required for the 4% grade road, so the solution is 528.19 ft.