<span>The charged balloon will stick to a neutral wall because of the Static Electricity:
</span>
The matter is formed by atoms and these atoms are composed of electrons, protons and neutrons (the electrons have a negative charge, the protons have a positive charge and the neutrons have no charge).
As the balloon is charged (It gained electrons), and the charge of the same sign repel each other, when it approaches the wall, the electrons of this wall will move away, and the positive charges (protons) will remain in the nearest area to the balloon. As the charges of different signs are attracted, the balloon will be stuck to the wall.
As its charge, proton -a positive charged molecule at the center of an atom- is the opposite of the electron -the particle which is orbiting the center of an atom.
Answer:
you need water, sodium iodide, and soap
Answer:
π/10 rads
Explanation:
It takes an hour (60 minutes) for the minute's hand to turn a full circle or achieve an angular rotation of
2πl rad.
Now, number of periods of 3 minutes in an hour is;
Number of periods = 60/3 = 20 periods
Thus, 3 minutes rotation accounts for 1/20 of 2π the rotation of the minute's hand in an hour.
Thus;
Angular displacement = (1/20) * 2π = π/10 rads
Answer:
Bubbles paused
Explanation:
the air bubble doesn't rise because it is no lighter than the water around it—there's no buoyancy. The droplet doesn't fall from the leaf because there's no force to pull it off. It's stuck there by molecular adhesion.
for instance, onto the International Space Station, gravity becomes negligible, and the laws of physics act differently than here on Earth
On Earth, the buoyancy of the air bubbles causes them to rise to the top together, creating a segregation between air and water. However, in microgravity, nothing forces the air bubbles to interact and thus rise together, Green said.