A car is built from various subsystems. If these subsystems are not working properly it is dangerous because it can cause a serious traffic accident.
<h3>What subsystems do cars have?</h3>
When you're testing the build of a car, you have to check its many subsystems:
- the battery
- the engine
- the cabin
- the thermal-management system
- the gearbox
- the chassis
- the suspension
<h3>Why is a car with damaged subsystems dangerous?</h3>
The subsystems of a car are very important components that allow the proper functioning of the car. These subsystems work synchronously making the car work properly.
However, if one of these subsystems is not working properly it could cause a malfunction that could lead to a traffic accident.
Learn more about cars in: brainly.com/question/11733094
Keremiad<span> is a long literary work, usually in prose, but sometimes in verse, in which the author bitterly laments the state of society and its morals in a serious tone of sustained invective, and always contains a prophecy of society's imminent downfall. </span>
Answer:
You will reach both your arms out to break your fall and save your head.
Explanation:
It common sense you don't want your head injured. Do you?
Answer: a network of several radio telescopes wired together
Explanation:
A radio interferometer combines signals of several radio telescopes which are used in astronomical observations simultaneously to simulate a discretely-sampled single telescope of very large aperture
Interferometer, an instrument that uses the interference patterns formed by waves to measure certain characteristics of the waves themselves or of materials that reflect, refract, or transmit the waves. Interferometers can also be used to make precise measurements of distance.
Answer:
The answer to the question is;
The total potential energy of the mass on the spring when the mass is at either endpoint of its motion is 5.0255 Joules.
Explanation:
To answer the question, we note that the maximum speed is 2.30 m/s and the mass is 1.90 kg
Therefore the maximum kinetic energy of motion is given by
Kinetic Energy, KE =
Where,
m = Attached vibrating mass = 1.90 kg
v = velocity of the string = 2.3 m/s
Therefore Kinetic Energy, KE =
×1.9×2.3² = 5.0255 J
From the law of conservation of energy, we have the kinetic energy, during the cause of the vibration is converted to potential energy when the mass is at either endpoint of its motion
Therefore Potential Energy PE at end point = Kinetic Energy, KE at the middle of the motion
That is the total potential energy of the mass on the spring when the mass is at either endpoint of its motion is equal to the maximum kinetic energy.
Total PE = Maximum KE = 5.0255 J.