Answer:
The options are not properly punctuated.
(a) cognitively impaired (b) using holophrases which is developmentally appropriate (c) language-delayed and needs professional assistance (d) trying to manipulate his father and needs to be disciplined
The correct answer is (b) using holophrases which is developmentally appropriate
Explanation:
Holophrases are one of the single-word utterances characteristic of children in the early stages of language acquisition, it is the use of a single word to express a complex idea. Holophrases are normal among toddlers within the age of two years below.
Hence the the use of "cup" by the toddler to express his intent for a cup of milk is referred to as holophrases which is developmentally appropriate
Let's assume that ground level is the height 0 meters. The change in potential energy is going to be gravitational potential energy, which is given by PE=mgh.
ΔPE=mgh-mgy
=mg(h-y)
=50(28-0)
=1400 J
Answer:
Please find the explanation below
Explanation:
A hypothesis in science is a testable explanation that is yet to be tested via experimentation. It is a predictive statement or suggested solution to an observation. A hypothesis aims at finding a possible explanation/answer to a question, which is subject to testing. One important aspect of formulating a hypothesis is that it tends to connect the independent variable with the dependent/measurable variable.
The statement "RED IS A BEAUTIFUL COLOR" cannot be considered a hypothesis because it does not aim to answer a question that can undergo experimental testing. This statement can not be measured via experimentation. The statement is not a possible answer to a question but rather a personal opinion about something.
Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:
