Answer:
Inquiry.
Explanation:
Inquiry can be defined as the process (act) of looking for information by asking various questions about the thing you are curious about.
Simply stated, an inquiry is an act that typically involves seeking information by asking questions with respect to the thing you have curiosity for or the thing you wish to know more about.
This ultimately implies that, an inquiry deals with the urge to find information, seek for the truth or knowledge, examine principles and facts about the thing you are curious about.
Answer:
Molarity = 0.5 M
Osmolarity = 0.5 x 2 = 1 Osmpl.
Molecules of Cl2 = 6.02 x
/ 4= 1.505 x
no. of molecules
Explanation:
If we add half mole in 1L volume than molarity will obviously be 0.5 M.
The osmolarity is molarity multiplies by number of dissociates of solute that for CaCl2 are 2. So, 2 x 0.5 = 1
Half will be molecules of Ca and half will be of Cl2 for 0.5M.
<u>Answer:</u> The activation energy of the reaction is 124.6 kJ/mol
<u>Explanation:</u>
To calculate activation energy of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{79^oC}}{K_{26^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B79%5EoC%7D%7D%7BK_%7B26%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 79°C = 
= equilibrium constant at 26°C = 
= Activation energy of the reaction = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = ![26^oC=[26+273]K=299K](https://tex.z-dn.net/?f=26%5EoC%3D%5B26%2B273%5DK%3D299K)
= final temperature = ![79^oC=[79+273]K=352K](https://tex.z-dn.net/?f=79%5EoC%3D%5B79%2B273%5DK%3D352K)
Putting values in above equation, we get:
![\ln(\frac{0.394}{2.08\times 10^{-4}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{299}-\frac{1}{352}]\\\\E_a=124595J/mol=124.6kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B0.394%7D%7B2.08%5Ctimes%2010%5E%7B-4%7D%7D%29%3D%5Cfrac%7BE_a%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B299%7D-%5Cfrac%7B1%7D%7B352%7D%5D%5C%5C%5C%5CE_a%3D124595J%2Fmol%3D124.6kJ%2Fmol)
Hence, the activation energy of the reaction is 124.6 kJ/mol
Answer:
Explanation:
From the information given:
Mass of carbon tetrachloride = 5 kg
Pressure = 1 bar
The given density for carbon tetrachloride = 1590 kg/m³
The specific heat of carbon tetrachloride = 0.84 kJ/kg K
From the composition, the initial volume of carbon tetrachloride will be:
= 0.0031 m³
Suppose
is independent of temperature while pressure is constant;
Then:
The change in volume can be expressed as:





However; the workdone = -PdV

W = - 7.6 J
The heat energy Q = Δ h


Q = 84 kJ
The internal energy is calculated by using the 1st law of thermodynamics; which can be expressed as;
ΔU = ΔQ + W
ΔU = 84 kJ + ( -7.6 × 10⁻³ kJ)
ΔU = 83.992 kJ
Given data:
Hydrogen (H) = 3.730 % by mass
Carbon (C) = 44.44%
Nitrogen (N) = 51.83 %
This means that if the sample weighs 100 g then:
Mass of H = 3.730 g
Mass of C = 44.44 g
Mass of N = 51.83 g
Now, calculate the # moles of each element:
# moles of H = 3.730 g/ 1 g.mole-1 = 3.730 moles
# moles of C = 44.44/12 = 3.703 moles
# moles of N = 51.83/14 = 3.702 moles
Divide by the lowest # moles:
H = 3.730/3.702 = 1
C = 3.703/3.702 = 1
N = 3.702/3.702 = 1
Empirical Formula = HCN