Answer:
Mass is lost due to the conversion of mass to energy
Explanation:
The question is not complete, the complete question is given as:
⇒ 
total mass equals 236.053 u total mass equals 235.868 u
Which statement explains the energy term in this reaction? (1) Mass is gained due to the conversion of mass to energy. (2) Mass is gained due to the conversion of energy to mass. (3) Mass is lost due to the conversion of mass to energy. (4) Mass is lost due to the conversion of energy to mass.
Answer: From Einstein’s equation E = mc², when a radioisotope element undergoes fission or fusion in a nuclear reaction, it loses a tiny amount of mass.This mass lost is converted to energy.
The law of conservation of energy holds for this type of reaction (i.e the sum of mass and energy is remains the same in a nuclear reaction). Mass changes to energy, but the total amount of mass and energy combined remains the same before and after a nuclear reaction.
From the reaction above, the total decrease in mass = 236.053 - 235.868 = 0.185 u
Solubility of a compound in water can be referred to as the amount of the compound that can be dissolved in 1 L of the solvent (water) at any given temperature. Solubility of a compound can be expressed in the units of g/L or mg/L.
Given that the solubility of calcium carbonate in water = 14 mg/L
We have to calculate the volume of water that can dissolve 11 g of calcium carbonate.
Converting 11 g calcium carbonate to mg:

Volume of water that would dissolve 11000 mg calcium carbonate
= 
=785.7 L
Rounding the volume 785.7 L to two significant figures, we get 790 L water.
Therefore, we would need 790 L water to completely dissolve 11 g of calcium carbonate.
Be, Mg, Ca increasing first ionization energy
As temperature increases, the particles will gain kinetic energy causing it to move more rapidly and randomly. However, this causes the gas to expand as the particles will have more energy to roam freely. Hence as temperature increases, Volume increases.
This is based on Charles' Law stating that the volume of a gas is directly proportional to its absolute temperature.
The minimum amount of energy that has to be added to start a reaction is the activation energy, which starts the reaction. It activates it.