Don’t eat or drink in labs
Dress for the lab; don’t wear open toed shoes
Dispose of lab waste properly
No horse play
Don’t taste or sniff things in the lab
Tire your hair back
Answer:
Phase changes that require a loss in energy are condensation and freezing.
Explanation:
Answer:
Double bond
Explanation:
an alkene is a unsaturated hydrocarbon which means that it contain at least one double bond
<h3>
Answer:</h3>
200 mL
<h3>
Explanation:</h3>
Concept tested: Dilution formula
We are given;
- Concentration of stock solution as 1.00 M
- Volume of the stock solution as 50 mL
- Molarity of the dilute solution as 0.25 M
We are required to calculate the volume of diluted solution;
- The stock solution is the original solution before dilution while diluted solution is the solution after dilution.
- Using the dilution formula we can determine the volume of diluted solution;
M1V1 = M2V2
Rearranging the formula;
V2 = M1V1 ÷ M2
= (1.00 M × 50 mL) ÷ 0.25 M
= 200 mL
Therefore, a volume of 200mL of 0.25 M solution could be made from the stock solution.
Answer:

Explanation:
Potential energy is energy due to position. It is the product of mass, height, and acceleration due to gravity.

The mass of the textbook is 1.85 kilograms. Assuming this is on Earth, the acceleration due to gravity is 9.8 meters per square second. The height is 2.23 meters.
- m= 1.85 kg
- g= 9.8 m/s²
- h= 2.23 m
Substitute the values into the formula.

Multiply the first 2 numbers together.

Multiply again.

- 1 kilogram square meter per square second (1 kg*m²/s²) is equal to 1 Joules (J)
- Our answer of 40.4299 kg*m²/s² is equal to 40.4299 J

The textbook has <u>40.4299 Joules of potential energy.</u>