The unknown of this problem is the experimental percent of water in the compound in order to remove the water of hydrogen, given the following:
Mass of crucible, cover and contents before heating 23.54 g
Mass of empty crucible and cover 18.82 g
Mass of crucible, cover, and contents after heating to constant mass 20.94 g
In order to get the answer, determine the following:
Mass of hydrated salt used = 23.54 g – 18.82 g = 4.72 g
Mass of dehydrated salt after heating = 20.94 g – 18.82 g = 2.12 g
Mass of water liberated from salt = 4.72 g – 2.12 g = 2.60 g
Then solve the percent of water in the hydrated salt by:
% water = (mass of water / mass of hydrated salt) x 100
% water = 2.60 g / 4.72 g x 100
% water = 55.08 % in the compound
Answer:
Second order
Explanation:
Given that:
When the reaction A → B + C is studied, a plot 1/[A]t vs. time gives a straight line with a positive slope.
From the integration method for the second order of reaction.
Suppose that:
rate = k₂[A]²
∴

Therefore, a plot of the linear function
versus t will be linear with a positive slope k₂ and the intercept on the concentration axis will be 
The linear plot for a second order reaction can be seen in theimage attached below.
A.fluoride
Fluoride helps to prevent tooth decay
Answer:
d. To the left because Q > K_p
Explanation:
Hello,
In this case, for the given reaction:

The pressure-based equilibrium expression is:

In such a way, since Kp is given we rather compute the reaction quotient at the specificed pressure of carbon dioxide as shown below:

Therefore, since Q>Kp we can see that there are more products than reactants, which means that the reaction must shift leftwards towards the reactants in order to reestablish equilibrium, thus, answer is d. To the left because Q > Kp.
Regards.
Answer:
= 74.4 grams / mole. Ernest Z. The reaction will produce 15.3 g of KCl
Explanation: