Considering ideal gas behavior, the volume of 1 mol of gas at STP is 22.4 L; then the volume occupied by 1.9 moles is 1.9mol*22.4L/mol = 42. 6 L.
Answer: 43 L
For a voltaic cell consisting of chromium, an electrode dipped in a 1.20 M chromium (III) nitrate solution and a tin electrode dipped in a 0.400 M tin (II) nitrate solution, the cell potential at 298 K is mathematically given as
Ecell = 0.577 V
<h3 /><h3>What is the cell potential at 298 K?</h3>
Generally, the equation for the Oxidation and Reduction is mathematically given as
Cr(s) ------------------ Cr+3(aq) + 3e- ] x 2 ...O
Sn+2(aq) + 2e- ------------ Sn(s) ] x 3 ...R
Reaction
2 Cr(s) + 3 Sn+2(aq) --------------- 2 Cr+3(aq) + 3 Sn(s)
Therefore
Eicell = - 0.14 - ( - 0.74)
Eicell = 0.60
In conclusion
![Ecell= E0cell - \frac{0.0591}{n} * \frac{log[Cr+3]^2}{ [ Sn+2]^3}](https://tex.z-dn.net/?f=Ecell%3D%20E0cell%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20%2A%20%5Cfrac%7Blog%5BCr%2B3%5D%5E2%7D%7B%20%5B%20Sn%2B2%5D%5E3%7D)

Ecell = 0.577 V
Read more about Temperature
brainly.com/question/13439286
Answer: 6 & 8
Explanation:
I got it correct on my test hope this helped
Answer : The rate of effusion of sulfur dioxide gas is 52 mL/s.
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.

or,
..........(1)
where,
= rate of effusion of nitrogen gas = 
= rate of effusion of sulfur dioxide gas = ?
= molar mass of nitrogen gas = 28 g/mole
= molar mass of sulfur dioxide gas = 64 g/mole
Now put all the given values in the above formula 1, we get:


Therefore, the rate of effusion of sulfur dioxide gas is 52 mL/s.
2 hydrogen molecules to one oxygen molecule
Remember by H2O since O doesn’t have a number after it you know there is only one oxygen molecule