Answer:
did you have the same answer to get the best
When the temperature of 0.50 kg of water decreases by 22 °C, the energy transferred to the surroundings from the water is -46.2 kJ.
A sample of 0.50 kg of water boils (reaches 100 °C). After a while, its temperature decreases by 22 °C.
We can calculate the energy transferred to the surroundings from the water in the form of heat (Q) using the following expression.

where,
- c: specific heat capacity of water
- m: mass of water
- ΔT: change in the temperature
When the temperature of 0.50 kg of water decreases by 22 °C, the energy transferred to the surroundings from the water is -46.2 kJ.
Learn more: brainly.com/question/16104165
Answer:
v1=21.81m/s
Explanation:
<em>When a golfer tees off, the head of her golf club, which has a mass of 160 g, is traveling 50 m/s just before it strikes a 46 g golf ball at rest on a tee. Immediately after the collision, the club head continues to travel in the same direction but at a reduced speed of 44 m/s. Neglect the mass of the club handle and determine the speed (in m/s) of the golf ball just after impact.</em>
According to the law of conservation of momentum, if the net external force on a system is zero, then the linear momentum of the system is conserved.
During collision of two particles, the external force on the system of two colliding particles is zero (only internal force acts between the colliding particles), therefore, the momentum is conserved during the collision.
Answer and Explanation:
Given :
head of the golf club=160g
velocity of the golf club=50 m/s
golf ball mass=46g
velocity=om/s
m1u1+m2u2=m1v1+m2v2.........................................1
160*50 +46*0=160*44+46*v1
8000=7040+46v1
960=46v1
v1=960/46
v1=21.81m/s
The law of enertia I’m not sure how to spell it in sorry inertia I think