Answer:
The resistance is 
Explanation:
Given that,
Diameter of tube = 8.5 mm
Length = 8 cm
Resistivity = 2.5 m
We need to calculate the resistance
The resistance is equal to the product of the resistivity and length divided by the area of cross section .
In mathematical form,

Where,
=resistivity
l = length
A = area of cross section
Put the value into the formula



Hence, The resistance is 
<span>Let F be the force of gravity, G be the gravitational constant, M be the mass of the earth, m your mass and r the radius of the earth, then:
F = G(Mm / (4(pi)*r^2))
The above expression gives the force that you feel on the earth's surface, as it is today!
Let us now double the mass of the earth and decrease its diameter to half its original size.
This is the same as replacing M with 2M and r with r/2.
Now the gravitational force (F' ) on the new earth's surface is given by:
F' = G(2Mm / (4(pi)(r/2)^2)) = 2G(Mm / ((1/4)*4(pi)*r^2)) = 8G(Mm / (4(pi)*r^2)) = 8F
So:
F' = 8F
This implies that the force that you would feel pulling you down (your weight) would increase by 800%!
You would be 8 times heavier on this "new" earth!</span>
<span>What is the process of conduction in terms of particle movement chocies
</span>
Steps 1 and 2)
The variables are W = work, P = power, and t = time. In this case, W = 9514 joules and P = 347 watts.
The goal is to solve for the unknown time t.
-----------------------
Step 3)
Since we want to solve for the time, and we have known W and P values, we use the equation t = W/P
-----------------------
Step 4)
t = W/P
t = 9514/347
t = 27.4178674351586
t = 27.4 seconds
-----------------------
Step 5)
The lawn mower ran for about 27.4 seconds. I rounded to three sig figs because this was the lower amount of sig figs when comparing 9514 and 347.
-----------------------
Note: we don't use the mass at all
Answer:
Approximately
(assuming that external forces on the cannon are negligible.)
Explanation:
If an object of mass
is moving at a velocity of
, the momentum
of that object would be
.
Momentum of the t-shirt:
.
If there is no external force (gravity, friction, etc.) on this cannon, the total momentum of this system should be conserved. In other words, if
denote the momentum of this cannon:
.
.
Rewrite
to obtain
. Since the mass of this cannon is
, the velocity of this cannon would be:
.