When the gold cube is immersed in mercury, the tension in the string in Newtons is 3.142N.
<h3>What is tension?</h3>
Tension is the force acting on the linear object like string, chain or rope due to pulling.
Volume of gold V = mass / density
V = 1.18 /19.3x 10³ =61.1 x 10⁻⁶ m³
Tension in the string after immersing will be
T = [ρ(Gold) -ρ(Hg)] g. V
T =[ 19.3x 10³ - 13.6 x 10³] x 9.81 x 61.1 x 10⁻⁶
T =3.416 N
Thus, the tension in the string is 3.42 N.
Learn more about tension.
brainly.com/question/4087119
#SPJ4
For the cement bag we can say as per its force diagram we will have

here we will have


now we will have

now plug in all data


so the pulling force will be 295 N
Answer:
The speed of sound is greater in hot air than it is in cold air. This is because the molecules of air are moving faster and the vibrations of the sound wave can therefore be transmitted faster. This means that when sound travels from hot air to cold air or from cold air to hot air it will refract.
Explanation:
Hope this will be help!
Answer:
(a) Since net charge remains same,after immersion Q is same
(b) I. 14.56pF ii. 3.05V
(c) ΔU = 5.204nJ
Explanation:
a)
C = kεA/d
k=1 for air
ε is 8.85x10-12F/m
A = .0025m2
d = .125m
C = 8.85x10-12x.0025/.125 = 1.77x10-13F = 0.177pF
Q = CV = .177pF * 244V = 43.188pC
Since net charge remains same,after immersion Q is same
b)
C = kεA/d, for distilled water k is approx. 80
Cwater = Cair x k
=0.177pF x 80 = 14.16pF
Q is same and C is changed V=Q/c holds. where Q is still 43.188pC and C is now 14.16pF, so V = 43.188pC/14.16pF = 3.05V
c) Change in energy: ΔU = Uwater - Uair
Uwater = Q2/2C = (43.188)2/2x.177pF = 5.27nJ
Uair = Q2/2C = (43.188)2/2x14.16pF = 0.066nJ
ΔU = 5.204nJ