Answer:
Dimension of cardboard is 22 m by 16 m
Explanation:
Given that,
Area = 352 cm²
Side of each square cutting from corner = 2 cm
Volume of box = 432 cm³
Let the two sides are x and y.
The area of the rectangular piece is

-------- (1)
The volume of the rectangular piece



x=16,22
Put the value of x in the equation (I)
For x = 16
For x = 22
Dimension of cardboard is 22 m by 16 m
epicycles were orbits within orbits used to explain discrepancies between expected and observed planetary movement, including the appearance of planets slowing down, speeding up, and moving backward.
The kayaker has velocity vector
<em>v</em> = (2.50 m/s) (cos(45º) <em>i</em> + sin(45º) <em>j</em> )
<em>v</em> ≈ (1.77 m/s) (<em>i</em> + <em>j</em> )
and the current has velocity vector
<em>w</em> = (1.25 m/s) (cos(315º) <em>i</em> + sin(315º) <em>j</em> )
<em>w</em> ≈ (0.884 m/s) (<em>i</em> - <em>j</em> )
The kayaker's total velocity is the sum of these:
<em>v</em> + <em>w</em> ≈ (2.65 m/s) <em>i</em> + (0.884 m/s) <em>j</em>
That is, the kayaker has a velocity of about ||<em>v</em> + <em>w</em>|| ≈ 2.80 m/s in a direction <em>θ</em> such that
tan(<em>θ</em>) = (0.884 m/s) / (2.65 m/s) → <em>θ</em> ≈ 18.4º
or about 18.4º north of east.
-- In a series circuit, the current ( I ) is the same at every point.
-- The power dissipated by any section of the circuit is I² x Resistance.
-- The wire has very low resistance, so I²R is very low dissipated power.
-- The filament in the bulb has most all of the resistance in the circuit,
so it dissipates virtually all the power of the circuit, and certainly much
more than the wires do.