Answer:
The heavier the load in a cart, the harder the cart is to turn.
Answer:
Yes, it is reasonable to neglect it.
Explanation:
Hello,
In this case, a single molecule of oxygen weights 32 g (diatomic oxygen) thus, the mass of kilograms is (consider Avogadro's number):

After that, we compute the potential energy 1.00 m above the reference point:

Then, we compute the average kinetic energy at the specified temperature:

Whereas
stands for the Avogadro's number for which we have:

In such a way, since the average kinetic energy energy is about 12000 times higher than the potential energy, it turns out reasonable to neglect the potential energy.
Regards.
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v:
Answer:
Ocean waves, sound waves, and light waves.
Explanation: