1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
7

At steady state, a reversible refrigeration cycle discharges energy at the rate QH to a hot reservoir at temperature TH, while r

eceiving energy at the rate QC from a cold reservoir at temperature TC. a. If TH = 13°C and TC = 2°C, determine the coefficient of performance. b. If QH = = 10.5 kW, 8.75 kW QC , and TC = 0°C, determine TH, in °C. c. If the coefficien
Engineering
2 answers:
ludmilkaskok [199]3 years ago
8 0

Answer:

a) COP_{R} = 25.014, b) T_{H} = 327.78\,K\,(54.63\,^{\textdegree}C)

Explanation:

a) The coefficient of performance of a reversible refrigeration cycle is:

COP_{R} = \frac{T_{L}}{T_{H}-T_{L}}

Temperatures must be written on absolute scales (Kelvin for SI units, Rankine for Imperial units)

COP_{R} = \frac{275.15\,K}{286.15\,K-275.15\,K}

COP_{R} = 25.014

b) The respective coefficient of performance is determined:

COP_{R} = \frac{Q_{L}}{Q_{H}-Q_{L}}

COP_{R} = \frac{8.75\,kW}{10.5\,kW-8.75\,kW}

COP_{R} = 5

But:

COP_{R} = \frac{T_{L}}{T_{H}-T_{L}}

The temperature at hot reservoir is found with some algebraic help:

COP_{R} \cdot (T_{H}-T_{L})=T_{L}

T_{H}-T_{L} = \frac{T_{L}}{COP_{R}}

T_{H} = T_{L}\cdot \left(1+\frac{1}{COP_{R}}  \right)

T_{H} = 273.15\,K \cdot \left(1+\frac{1}{5}  \right)

T_{H} = 327.78\,K\,(54.63\,^{\textdegree}C)

gregori [183]3 years ago
3 0

Answer:

a) COP = 26

b) TH = 327.6 K

c) TC = 297.3 K

Explanation:

a) TH = temperature hot reservoir = 13°C = 286 K

Tc = temperature cold reservoir = 2°C = 275 K

The coefficient of performance is

COP=\frac{1}{1-\frac{T_{C} }{T_{H} } } =\frac{1}{1-275/286} =26

b) given:

QH = 10.5 kW

QC = 8.75 kW

TC = 0°C = 273 K

\frac{Q_{H} }{Q_{C} } =\frac{T_{H} }{T_{C} } \\T_{H} =\frac{Q_{H}T_{C}  }{Q_{C} } =\frac{10.5*273}{8.75} =327.6K

c) From the COP formula we clear TC:

10=\frac{1}{1-T_{C}/300 } \\T_{C} =297.3k

You might be interested in
Engineers create a new metal that is stronger than steel but much lighter. This material is also significantly cheaper than what
zysi [14]

The best step for the engineers to make next is option D. Begin to design an airplane using this metal.

<h3>What is the metallic is plane parts?</h3>

Aluminum and its alloys are nevertheless very famous uncooked substances for the production of business planes, because of their excessive electricity at exceedingly low density. Currently, excessive-electricity alloy 7075, which includes copper, magnesium and zinc, is the only used predominantly withinside the plane industry.

The solution is D, due to the fact even as it's far crucial to marketplace the fabric and ensure humans are inquisitive about buying, they first want to attempt to layout aircraft the usage of this fabric. There isn't anyt any use promoting an aircraft constituted of this material_ if a aircraft can not be built.

Read more about the aircraft:

brainly.com/question/5055463

#SPJ1

7 0
2 years ago
A sand has a natural water content of 5% and bulk unit weight of 18.0 kN/m3. The void ratios corresponding to the densest and lo
Zinaida [17]

Answer:

Relative density = 0.545

Degree of saturation = 24.77%

Explanation:

Data provided in the question:

Water content, w = 5%

Bulk unit weight = 18.0 kN/m³

Void ratio in the densest state, e_{min} = 0.51

Void ratio in the loosest state, e_{max} = 0.87

Now,

Dry density, \gamma_d=\frac{\gamma_t}{1+w}

=\frac{18}{1+0.05}

= 17.14 kN/m³

Also,

\gamma_d=\frac{G\gamma_w}{1+e}

here, G = Specific gravity = 2.7 for sand

17.14=\frac{2.7\times9.81}{1+e}

or

e = 0.545

Relative density = \frac{e_{max}-e}{e_{max}-e_{min}}

= \frac{0.87-0.545}{0.87-0.51}

= 0.902

Also,

Se = wG

here,

S is the degree of saturation

therefore,

S(0.545) = (0.05)()2.7

or

S = 0.2477

or

S = 0.2477 × 100% = 24.77%

7 0
3 years ago
It has a piece of 1045 steel with the following dimensions, length of 80 cm, width of 30 cm, and a height of 15 cm. In this piec
Serggg [28]

Answer:

material remove in 3 min is 16790.4 mm³/s

Explanation:

given data

length L = 80 cm = 800 mm

width W = 30 cm

height H = 15 cm

make grove length = 80 cm

width = 8 cm

depth = 10 cm

mill toll diameter = 4 mm

axial cutting depth = 20 mm

to find out

How much material removed in 3 minutes

solution

first we find time taken for length of advance that is

time = \frac{length}{advance}

here advance is given as 0.001166 mts / sec

so  time = \frac{800}}{0.001166*1000}

time = 686.106 seconds

now we find material remove rate that is

remove rate = mill toll rate × axial cutting depth × advance

remove rate = 4 × 20×0.001166 ×1000

remove rate = 93.28 mm³/s

so

material remove in 3 minute = 3 × 60 = 180 sec

so material remove in 3 min = 180 × 93.28

material remove in 3 min is 16790.4 mm³/s

7 0
3 years ago
Steam enters an adiabatic turbine at 10 MPa and 500°C and leaves at 10 kPa with a quality of 90 percent. Neglecting the changes
Anna35 [415]

Answer:

The mass flow rate of steam m=5.4 Kg/s

Explanation:

Given:

  At the inlet of turbine P=10 MPa  ,T=500 C

 AT the exit of turbine  P=10 KPa   ,x=0.9

 Required power=5 MW

From steam table

<u> At 10 MPa and 500 C:</u>

  h=3374 KJ/Kg  ,s=6.59 KJ/Kg-K  (Super heated steam table)

<u>At 10 KPa:</u>

h_g=2675.1 KJ/Kg, h_f=417.51  KJ/Kg

s_g= 7.3  KJ/Kg-K                ,s_f=1.3   KJ/Kg-K

So enthalpy of steam at the exit of turbine

h= h_f+x(h_g- h_f)

Now by putting the values

h= 417.51+0.9(2675.1- 417.51) KJ/Kg

h=2449.34  KJ/Kg

Lets take m is the mass flow rate of steam

So 5\times 10^3=m\times (3374-2449.34)

m=5.4 Kg/s

So the mass flow rate of steam m=5.4 Kg/s

8 0
4 years ago
Air is compressed by a 40-kW compressor from P1 to P2. The air temperature is maintained constant at 25°C during this process a
AlexFokin [52]

Answer:

the rate of entropy change of the air is -0.1342 kW/K

the assumptions made in solving this problem

- Air is an ideal gas.

- the process is isothermal ( internally reversible process ). the change in internal energy is 0.

- It is a steady flow process

- Potential and Kinetic energy changes are negligible.

Explanation:

Given the data in the question;

From the first law of thermodynamics;

dQ = dU + dW ------ let this be equation 1

where dQ is the heat transfer, dU is internal energy and dW is the work done.

from the question, the process is isothermal ( internally reversible process )

Thus, the change in internal energy is 0

dU = 0

given that; Air is compressed by a 40-kW compressor from P1 to P2

since it is compressed, dW = -40 kW

we substitute into equation 1

dQ = 0 + ( -40 kW )

dQ = -40 kW

Now, change in entropy of air is;

ΔS_{air = dQ / T

given that T = 25 °C = ( 25 + 273.15 ) K = 298.15 K

so we substitute

ΔS_{air =  -40 kW / 298.15 K

ΔS_{air =  -0.13416 ≈ -0.1342 kW/K

Therefore, the rate of entropy change of the air is -0.1342 kW/K

the assumptions made in solving this problem

- Air is an ideal gas.

- the process is isothermal ( internally reversible process ). the change in internal energy is 0.

- It is a steady flow process

- Potential and Kinetic energy changes are negligible.

7 0
3 years ago
Other questions:
  • A mixing basin in a sewage filtration plant is stirred by a mechanical agitator with a power input/WF L T=. Other parameters de
    8·1 answer
  • Which of the following is not a primary or fundamental dimension? (a)-mass m (b)-length L (c)- timer t (d)-volume V
    5·1 answer
  • The phrase "positive to positive, negative to ground" is correct when jump starting a car.
    9·1 answer
  • if you had 100 B size sheets and you cut them into A size sheets, how many sheets of A size paper would you have
    14·1 answer
  • The controlled variable in a closed-loop system is the direction of a robot arm. Initially, it is at 50o; then it is commanded t
    12·1 answer
  • Consider the titration of 100.0 mL of 0.200 M CH3NH2 by 0.100 M HCl.
    13·1 answer
  • What are difference between conic sectional and solids?
    15·1 answer
  • Moonbeam-Musel (MM), a manufacturer of small appliances, has a large injection molding department. Because MM's CEO, Crosscut Sa
    13·1 answer
  • What Is Photosynthesis ?​
    7·2 answers
  • Subject : SCIENCE
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!