Answer: I am not for sure
Explanation:
Answer:
REEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEe
Explanation:
Answer: c. The Professional Engineers Act and Board Rules
Explanation:
The reference source may be consulted to answer questions regarding the Professional Engineers Act is the The Professional Engineers Act and Board Rules.
The Professional Engineers Act and Board Rules is an Act that was established in order to regulate the qualifications for professional engineered, register them and also make sure that their conducts and behavior are looked into.
Answer:
V₂ = 20 V
Vt = 20 V
V₁ = 20 V
V₃ = 20 V
I₁ = 10 mA
I₃ = 3.33 mA
It = 18.33 mA
Rt = 1090.91 Ω
Pt = 0.367 W
P₁ = 0.2 W
P₂ = 0.1 W
P₃ = 0.067 W
Explanation:
Part of the picture is cut off. I assume there is a voltage source Vt there?
First, use Ohm's law to find V₂.
V = IR
V₂ = (0.005 A) (4000 Ω)
V₂ = 20 V
R₁ and R₃ are in parallel with R₂ and the voltage source Vt. That means V₁ = V₂ = V₃ = Vt.
V₁ = 20 V
V₃ = 20 V
Vt = 20 V
Now we can use Ohm's law again to find I₁ and I₃.
V = IR
I = V/R
I₁ = (20 V) / (2000 Ω)
I₁ = 0.01 A = 10 mA
I₃ = (20 V) / (6000 Ω)
I₃ = 0.00333 A = 3.33 mA
The current It passing through Vt is the sum of the currents in each branch.
It = I₁ + I₂ + I₃
It = 10 mA + 5 mA + 3.33 mA
It = 18.33 mA
The total resistance is the resistance of the parallel resistors:
1/Rt = 1/R₁ + 1/R₂ + 1/R₃
1/Rt = 1/2000 + 1/4000 + 1/6000
Rt = 1090.91 Ω
Finally, the power is simply each voltage times the corresponding current.
P = IV
Pt = (0.01833 A) (20 V)
Pt = 0.367 W
P₁ = (0.010 A) (20 V)
P₁ = 0.2 W
P₂ = (0.005 A) (20 V)
P₂ = 0.1 W
P₃ = (0.00333 A) (20 V)
P₃ = 0.067 W