Answer:
An opamp is an operation amplifier. It takes an input signal and amplifies it on the output side.
An ideal opamp should have infinite impedance at its input, infinite gain on the output, and zero impedance on the output
Answer:
d. all of the above
Explanation:
There are two components of acceleration for a particle moving in a circular path, radial and tangential acceleration.
The radial acceleration is given by;

Where;
V is the velocity of the particle
R is the radius of the circular path
This radial acceleration is always directed towards the center of the path, perpendicular to the tangential acceleration and negative.
Therefore, from the given options in the question, all the options are correct.
d. all of the above
Answer:
remain the same constant
Explanation:
if a small gear is making 5 rpm turning a big gear thats making 1 rpm the bug gear is making lots of torque but if its going the opposite way its much harder to turn the big gear 1 rpm just to make the little gear do 5 rpm and it makes way less torque if thre both the same size there ging to stay the same speed
Answer:
D) 1.04 Btu/s from the liquid to the surroundings.
Explanation:
Given that:
flow rate (m) = 2 lb/s
liquid specific enthalpy at the inlet (
Btu/lb)
liquid specific enthalpy at the exit (
Btu/lb)
initial elevation (
)
final elevation (
)
acceleration due to gravity (g) = 32.174 ft/s²
= 3 Btu/s
The energy balance equation is given as:
![Q_{cv}-W{cv}+m[(h_1-h_2)+(\frac{V_1^2-V_2^2}{2})+g(z_1-z_2)]=0](https://tex.z-dn.net/?f=Q_%7Bcv%7D-W%7Bcv%7D%2Bm%5B%28h_1-h_2%29%2B%28%5Cfrac%7BV_1%5E2-V_2%5E2%7D%7B2%7D%29%2Bg%28z_1-z_2%29%5D%3D0)
Since kinetic energy effects are negligible, the equation becomes:
![Q_{cv}-W{cv}+m[(h_1-h_2)+g(z_1-z_2)]=0](https://tex.z-dn.net/?f=Q_%7Bcv%7D-W%7Bcv%7D%2Bm%5B%28h_1-h_2%29%2Bg%28z_1-z_2%29%5D%3D0)
Substituting values:
![Q_{cv}-(-3)+2[(40.09-40.94)+\frac{32.174(0-100)}{778*32.174} ]=0\\Q_{cv}+3+2[-0.85-0.1285 ]=0\\Q_{cv}+3+2(-0.9785)=0\\Q_{cv}+3-1.957=0\\Q_{cv}+1.04=0\\Q_{cv}=-1.04\\](https://tex.z-dn.net/?f=Q_%7Bcv%7D-%28-3%29%2B2%5B%2840.09-40.94%29%2B%5Cfrac%7B32.174%280-100%29%7D%7B778%2A32.174%7D%20%5D%3D0%5C%5CQ_%7Bcv%7D%2B3%2B2%5B-0.85-0.1285%20%5D%3D0%5C%5CQ_%7Bcv%7D%2B3%2B2%28-0.9785%29%3D0%5C%5CQ_%7Bcv%7D%2B3-1.957%3D0%5C%5CQ_%7Bcv%7D%2B1.04%3D0%5C%5CQ_%7Bcv%7D%3D-1.04%5C%5C)
The heat transfer rate is 1.04 Btu/s from the liquid to the surroundings.