1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
14

An exit sign must be:Colored in a way that doesn’t attract attentionIlluminated by a reliable light sourceAt least 3 inches tall

Approved by the fire department
Engineering
1 answer:
Ksenya-84 [330]3 years ago
5 0

Answer:

Red

Explanation:

You might be interested in
Sea water with a density of 1025 kg/m3 flows steadily through a pump at 0.21 m3 /s. The pump inlet is 0.25 m in diameter. At the
myrzilka [38]

Answer:

\dot W_{pump} = 16264.922\,W\,(16.265\,kW)

Explanation:

The pump is modelled after applying Principle of Energy Conservation, whose form is:

\frac{P_{1}}{\rho\cdot g}+ \frac{v_{1}^{2}}{2\cdot g} +z_{1} + h_{pump}=\frac{P_{2}}{\rho\cdot g}+ \frac{v_{2}^{2}}{2\cdot g} +z_{2}

The head associated with the pump is cleared:

h_{pump} = \frac{P_{2}-P_{1}}{\rho\cdot g}+\frac{v_{2}^{2}-v_{1}^{2}}{2\cdot g}+(z_{2}-z_{1})

Inlet and outlet velocities are found:

v_{1} = \frac{0.21\,\frac{m^{3}}{s} }{\frac{\pi}{4}\cdot (0.25\,m)^{2} }

v_{1} \approx 4.278\,\frac{m}{s}

v_{2} = \frac{0.21\,\frac{m^{3}}{s} }{\frac{\pi}{4}\cdot (0.152\,m)^{2} }

v_{2} \approx 11.573\,\frac{m}{s}

Now, the head associated with the pump is finally computed:

h_{pump} = \frac{175\,kPa-81.326\,kPa}{(1025\,\frac{kg}{m^{3}} )\cdot (9.807\,\frac{m}{s^{2}} )} +\frac{(11.573\,\frac{m}{s} )^{2}-(4.278\,\frac{m}{s} )^{2}}{2\cdot (9.807\,\frac{m}{s^{2}} )} + 1.8\,m

h_{pump} = 7.705\,m

The power that pump adds to the fluid is:

\dot W_{pump} = \dot V \cdot \rho \cdot g \cdot h_{pump}

\dot W_{pump} = (0.21\,m^{3})\cdot (1025\,\frac{kg}{m^{3}})\cdot (9.807\,\frac{m}{s^{2}})\cdot(7.705\,m)

\dot W_{pump} = 16264.922\,W\,(16.265\,kW)

4 0
3 years ago
1. One of these is NOT a type of pneumatic tool. Which one?
Serggg [28]

Answer:Circular

Explanation:

It’s the only thing not list under pneumatic tools‍♂️

5 0
3 years ago
Write in an Excel cell the appropriate @RISK function for a binomial distribution that results from 50 trials with probability o
borishaifa [10]

Answer:

Binomial Function

I got my output using the formula = 1 - BINOMDIST (17, 50, 0.3, TRUE)

Then got the cumulative probability distribution at 17 to be 0.2178

Explanation:

To draw a normal distribution:

1. Got to '@risk' and click on 'defined distribution'

2. Select 'binomial' in function block

3. enter formula in cell formula and click okay

The use of @RISK to draw a binomial distribution of 50 trials and probability of success as 0.3 by entering formular =RISKBINOMIAL (50, 0.3).

6 0
3 years ago
A rectangular car-top carrier of 1.7-ft height, 5.0-ft length (front to back), and 4.2-ft width is attached to the top of a car.
Nataliya [291]

Answer:

\Delta P =1.2 \frac{1.3}{2}(26.822m/s)^2 (4.2*1.7*(0.3048)^2)=13.88 hp

Explanation:

We can assume that the general formula for the drag force is given by:

D= C_D \frac{\rho}{2}V^2 A

And we can see that is proportional to the area. On this case we can calculate the area with the product of the width and the height. And we can express the grad force like this:

D_1 = C_{D1} \frac{\rho}{2}V^2 (wh)

Where w is the width and h the height.

The last formula is without consider the area of the carrier, but if we use the area for the carrier we got:

D_2 = C_{D2} \frac{\rho}{2}V^2 (wh+ A_{carrier})

If we want to find the additional power added with the carrier we just need to take the difference between the multiplication of drag force by the velocity (assuming equal velocities for both cases) of the two cases, and we got:

\Delta P = C_{D2} \frac{\rho}{2}V^2 (wh+ A_{carrier}) V-  C_{D1} \frac{\rho}{2}V^2 (wh) V

We can assume the same drag coeeficient C_{D1}=C_{D2}=C_{D} and we got:

\Delta P = C_{D} \frac{\rho}{2}V^2 (wh+ A_{carrier}) V-  C_{D} \frac{\rho}{2}V^2 (wh) V

\Delta P = C_{D} \frac{\rho}{2}V^3 (A_{carrier})

1.7 ft =0.518 m

60 mph = 26.822 m/s

In order to find the drag coeffcient we ned to estimate the Reynolds number first like this:

R_E= \frac{Vl}{v}= \frac{26.822m/s*0.518 m}{1.58x10^{-4} Pa s}= 8.79 x10^{4}

And the value for the kinematic vicosity was obtained from the table of physical properties of the air under standard conditions.

Now we can find the aspect ratio like this:

\frac{l}{h}=\frac{5}{1.7}2.941

And we can estimate the calue of C_D = 1.2 from a figure.

And we can calculate the power difference like this:

\Delta P =1.2 \frac{1.3}{2}(26.822m/s)^2 (4.2*1.7*(0.3048)^2)=13.88 hp

8 0
3 years ago
"A fluid at a pressure of 7 atm with a specific volume of 0.11 m3/kg is constrained in a cylinder behind a piston. It is allowed
AlekseyPX

Answer:

Work done by the fluid in the piston=164.5kJ/kg

Specific gas constant= 0.263 kJ/kg K

Molecular weight of gas= 31.54 kmol

7 0
4 years ago
Other questions:
  • A rigid, sealed cylinder initially contains 100 lbm of water at 70 °F and atmospheric pressure. Determine: a) the volume of the
    14·1 answer
  • A particular NMOS device has parameters VT N = 0.6 V, L = 0.8µm, tox = 200 Å, and µn = 600 cm2 /V–s. A drain current of ID = 1.2
    14·1 answer
  • Which of the following materials is created by a natural, eco-friendly process, is a renewable resource, and is a primary buildi
    11·2 answers
  • A paper clip is made of wire 0.75 mm in diameter. If the original material from which the wire is made is a rod 25 mm in diamete
    7·1 answer
  • A rapid sand filter has a loading rate of 8.00 m/h, surface dimensions of 10 m ´ 8 m, an effective filtration rate of 7.70 m/h.
    14·1 answer
  • Water flows at a uniform velocity of 3 m/s into a nozzle that reduces the diameter from 10 cm to 2 cm. Calculate the water’s vel
    8·1 answer
  • 4. Which of the following drive roll designs is used
    8·1 answer
  • Faster air movement over an airfoil creates a _________ pressure field, which in turn allows lift.
    7·1 answer
  • The stagnation chamber of a wind tunnel is connected to a high-pressure airbottle farm which is outside the laboratory building.
    11·1 answer
  • How do I give brainless?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!