1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly_w [17]
3 years ago
15

Describe the relationship between atomic structure and Youngs' modulus?

Engineering
1 answer:
Stolb23 [73]3 years ago
5 0

Answer:

The relationship between atomic structure and Youngs modulus could be defined as the stiffness of a material.

Explanation:

Young modulus is a constant that shows how a material can be deformed under a stress applied on certain material and also shows its stiffness, this deformation will change or not its atomic structure depending on the capability of material to recover from the stress applied. The stiffness of a material is directly proportional to Young's modulus, as well as its atomic structure, if a material has high stiffness, it won't bend so easily and it won't change its atomic structure easily.

You might be interested in
Each of the following activities are commonly performed during the implementation of the Database Life Cycle (DBLC). Fill in the
kicyunya [14]
Yessiree I agree with yu cause yu are right
4 0
3 years ago
Outline the structure of an input-output model (including assumptions about supply and demand). What is an inverse matrix? Why i
pishuonlain [190]

Answer:

Explanation:

C.1 Input-Output Model

It is a formal model that divides the economy into 2 sectors and traces the flow of inter-industry purchases and sales. This model was developed by Wassily Leontief in 1951. In simpler terms, the inter-industry model is a quantitative economic model that defines how the output of one industry becomes the input of another industrial sector. It is an interdependent economic model where the output of one becomes the input of another. For Eg: The Agriculture sector produces output using the inputs from the manufacturing sector.

The 3 main elements are:

Concentrates on an economy which is in equilibrium

Deals with technical aspects of production

Based on empirical investigations and assumptions

Assumptions

2 sectors - " Inter industry sector" and "final sector"

Output of one industry is the input for another

No 2 goods are produced jointly. i.e each industry produces homogenous goods

Prices, factor suppliers and consumer demands are given

No external economies or diseconomies of production

Constant returns to scale

The combinations of inputs are employed in rigidly fixed proportions.

Structure of IO model

See image 1

Quadrant 1: Flow of products which are both produced and consumed in the process of production

Quadrant 2: Final demand for products of each producing industry.

Quadrant 3: Primary inputs to industries (raw materials)

Quadrant 4: Primary inputs to direct consumption (Eg: electricity)

The model can be used in the analysis of the labor market, forecast economic development of a nation and analyze economic developments of various regions.

Leontief inverse matrix shows the output rises in each sector due to a unit increase in final demand. Inverting the matrix is significant since it is a linear system of equations with unique solutions. Thus, the final demand vector for the required output can be found.

C.2 Linear programming problems

Linear programming problems are optimization problems in which objective function and the constraints are all linear. It is most useful in making the best use of scarce resources during complex decision makings.

Primal LP, Dual LP, and Interpretations

Primal linear programming: They can be viewed as a resource allocation model that seeks to maximize revenue under limited resources. Every linear program has associated with it a related linear program called dual program. The original problem in relation to its dual is termed as a primal problem. The objective function is a linear combination of n variables. There are m constraints that place an upper bound on a linear combination of the n variables The goal is to maximize the value of objective functions that are subject to the constraints. If the primal linear programming has finite optimal value, then the dual has finite optimal value, and the primal and dual have the same optimal value. If the optimal solution to the primal problem makes a constraint into a strict inequality, it implies that the corresponding dual variable must be 0. The revenue-maximizing problem is an example of a primal problem.

Dual Linear Programming: They represent the worth per unit of resource. The objective function is a linear combination of m values that are the limits in the m constraints from the primal problem. There are n dual constraints that place a lower bound on a linear combination of m dual variables. The optimal dual solution implies fair prices for associated resources. Stri=ong duality implies the Company’s maximum revenue from selling furniture = Entrepreneur’s minimum cost of purchasing resources, i.e company makes no profit. Cost minimizing problem is an example of dual problems

See image 2

n - economic activities

m - resources

cj - revenue per unit of activity j

4 0
3 years ago
Read 2 more answers
X cotx expansion using maclaurins theorem.
Lemur [1.5K]

It is to be noted that it is impossible to find the Maclaurin Expansion for F(x) = cotx.

<h3>What is Maclaurin Expansion?</h3>

The Maclaurin Expansion is a Taylor series that has been expanded around the reference point zero and has the formula f(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!

<h3>What is the explanation for the above?</h3>

as indicated above, the Maclaurin infinite series expansion is given as:

F(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!

If F(0) = Cot 0

F(0) = ∝ = 1/0

This is not definitive,

Hence, it is impossible to find the Maclaurin infinite series expansion for F(x) = cotx.

Learn more about Maclaurin Expansion at;
brainly.com/question/7846182
#SPJ1

4 0
2 years ago
A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of Syt = 60 kpsi and Syc = 75 kpsi. Using
kow [346]

Answer:

2.135

Explanation:

Lets make use of these variables

Ox 16.5 kpsi, and Oy --14,5 kpsi

To determine the factor of safety for the states of plane stress. We have to first understand the concept of Coulomb-Mohr theory.

Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress.

Please refer to attachment for the step by step solution.

4 0
3 years ago
If you had a match and a lantern and a candle in the dark which one would you choose to light.
PSYCHO15rus [73]

Answer:

The match

Explanation:

You can light both the lantern and the candle if you light the match first.

I don't know of this is a homework question, but I answered it anyway :)

5 0
3 years ago
Read 2 more answers
Other questions:
  • An alloy has a yield strength of 818 MPa and an elastic modulus of 104 GPa. Calculate the modulus of resilience for this alloy [
    13·1 answer
  • Air as an ideal gas in a closed system undergoes a reversible process between temperatures of 1000 K and 400 K. The beginning pr
    9·1 answer
  • Turning a screw with a screwdriver pushes the screw into the wood. The force is __________ over many turns
    9·1 answer
  • Link AB is to be made of a steel for which the ultimate normal stress is 65 ksi. Determine the cross-sectional area of AB for wh
    14·1 answer
  • A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures. This cylinder has a 90mm OD, a 1.65
    8·1 answer
  • The density of a certain material is such that it weighs 9 pounds per cubic foot of
    10·1 answer
  • A __________ is an added note showing additional or more specific information.
    13·1 answer
  • A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
    8·1 answer
  • Heating of Oil by Air. A flow of 2200 lbm/h of hydrocarbon oil at 100°F enters a heat exchanger, where it is heated to 150°F by
    7·1 answer
  • When using fall arrest, free fall must be kept at or below how many feet
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!