Answer:
Explanation:
4140-40 I’d pick wood
I hope this helps! :)
Explanation:
z3d33sxurljt 36f
3fभथठभदाफमदखज्ञफादफज्ञादफज्ञिलफ इऋबिअऋब
To solve this problem we will apply the concepts related to translational torque, angular torque and the kinematic equations of angular movement with which we will find the angular displacement of the system.
Translational torque can be defined as,

Here,
F = Force
d = Distance which the force is applied


At the same time the angular torque is defined as the product between the moment of inertia and the angular acceleration, so using the previous value of the found torque, and with the moment of inertia given by the statement, we would have that the angular acceleration is




Now the angular displacement is

Here
= Initial angular velocity
t = time
Angular acceleration
= Angular displacement
Time is given as 1 minute, in seconds will be

There is not initial angular velocity, then

Replacing,


The question neglects the effect of gravitational force.
Answer:
The answer is as given in the explanation.
Explanation:
The 1st thing to notice is the assumptions required. Thus as the diameter of the cylinder and the wind tunnel are given such that the difference is of the orders of the magnitude thus the assumptions as given below are validated.
- Flow is entirely laminar, there's no boundary layer release.
- Flow is streamlined, ie, it follows the geometrical path imposed by the curvature.
By D'alembert's paradox, "The net pressure drag exerted on a circular cylinder that moves in an inviscid fluid of large extent is identically zero".Just in the surface of the cylinder, the velocity profile can be given in the next equation:

And the pressure P on the surface of cylinder is given by Bernoulli's equation along the streamline through that point:

where P_∞ is Pressure at stagnation point, U is the velocity given, ρ is the density of the fluid (in this case air) and θ is the angle measured from the center of cylinder to the adjacent point where your pressure point will be determine.