Answer:
It's 1, places that are closer to the equator receive more direct sunlight and have
Explanation:
Answer:
(a) adding 0.050 mol of HCl
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base -or vice versa-.
In the buffer:
1.0L × (0.10 mol / L) = 0.10 moles of HF -<em>Weak acid-</em>
1.0L × (0.050 mol / L) = 0.050 moles of NaF -<em>Conjugate base-</em>
-The weak acid reacts with bases as NaOH and the conjugate base reacts with acids as HCl-
Thus:
<em>(a) adding 0.050 mol of HCl:</em> The addition of 0.050moles of HCl produce the reaction of 0.050 moles of NaF producing HF. That means after the reaction, all NaF is consumed and you will have in solution just the weak acid <em>destroying the buffer</em>.
(b) adding 0.050 mol of NaOH: The NaOH reacts with HF producing more NaF. Would be consumed just 0.050 moles of HF -remaining 0.050 moles of HF-. Thus, the buffer <em>wouldn't be destroyed</em>.
(c) adding 0.050 mol of NaF: The addition of conjugate base <em>doesn't destroy the buffer</em>
I choose question 1, so molarity is the concentration of a soulution expressed as the number of moles of solute by the litress of soulution. to get molarity you divide the moles of soulute by the litress of solution. soo 1 calculate the number of moles of solute present. 2 Calculate the number of litress solution present. 3. divide the number of moles of solute by the number of litress of solution
soo 1 mol of NaOH has a mass of 40.00 g, so moles of NaOH= 26.7. 1 mole divided 40.00 = 0.375. litress of solution = 650 g. im not sure why its a g i usally do it Ls so i guess its the way your teacher wants you to do it so do you know how to do that. so molarity = moles of solute and litress solution. sorry this probably didnt help i just wanted to add something that might help. im still working on this stuff myself hope this helps.
A conductor is what helps heat or electricity pass through an object. Examples of conductors are, silver, iron, aluminum, etc..
An insulator does the opposite and instead, stops either from going through. Examples of an insulator is paper, wood, rubber, etc.