Find 10 % of 50,000 = 5000
double it to make 10000
add on to 50000 to make 60000
60000 is your answer
Answer:
Nearest, the revolutions per minute will be 29.
Explanation:
Given that,
Radius of circle = 1 m
Acceleration a =g
We know that,
Angular frequency is defined as,

Where, n = number of revolutions in one second
We need to calculate the revolutions in one second
Using formula of centripetal acceleration

Put the value of a and ω


Put the value into the formula


We need to calculate the revolutions per minute
Using value for the revolutions per minute


Hence, Nearest, the revolutions per minute will be 29.
Work = (force) x (distance)
You could look at the two cases, and see right away that
the first one has more force acting through more distance,
so it must be more work. But since I just gave you the formula
for Work, let's calculate the amount of it for both cases:
First case: Work = (115 N) x (15 m) = 1,725 joules
Second case: Work = (20 N) x (10 m) = 200 joules
The first case involves 8.625 times as much work as the second case.
Earthquakes release energy in several forms: The energy in seismic waves that cause the ground to shake. Heat energy associated with friction on the fault slip surface. Gravitational potential energy (the energy stored when lifting something off the ground, for example) may change as a result of the earthquake.
Answer:

Explanation:
According to the question
net force F = 2.20×10^6 N
displacement 
from figure , the horizontal forces are same in magnitude and opposite direction.
so , neglect these two forces.
we can take only vertical components of the force.
total force F' = F cos 19° + F cos 19°
= 2×F×cos 19° ................. (1
therefore , total work is
W = F'S
= (2F cos19)×S

