Answer:
k = 3.41 N/m
Explanation:
The time period is given as:

Another formula for the time period of the spring-mass system is:

<u>k = 3.41 N/m</u>
Answer:
pressure=height × density×acc due to gravity
so
pressire is directly proportional to height hence it decreses with decrease in height
here air column height is measured upside down so decreases witn increment
Explanation:
It is given that,
Angular frequency, 
Maximum displacement, A = 0.5 m at t = 0 s
We need to find the time at which it reaches its maximum speed. Firstly, we will find the maximum velocity of the object that is exhibiting SHM.


............(1)
Acceleration of the object, 

...............(2)
Using first equation of motion we can calculate the time taken to reach maximum speed.



t = 0.25 s
So, the object will take 0.25 seconds to reach its maximum speed. Hence, this is the required solution.
The magnitude of the impulse delivered to the baseball by the bat is 8.8 Ns.
<h3>Impulse experienced by objects</h3>
The impulse experienced by any object is equal to the change in the momentum of the object.
The magnitude of the impulse delivered to the baseball by the bat is calculated by applying the following equation.
J = Ft
where;
- F is applied force = 8000 N
- t is time, = 1.1 ms
J = (8000) x (1.1 x 10⁻³)
J = 8.8 Ns
Thus, the magnitude of the impulse delivered to the baseball by the bat is 8.8 Ns.
Learn more about impulse here: brainly.com/question/229647
I want to say frequencies would be the answer. I could be wrong though. Hope this may have helped!