Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.
Answer:
The coastal regions are affected by abrasion due to large volumes of water and increased winds. This can become more severe especially with storms that hit coastal regions.
Explanation:
Abrasion is physical weathering caused by water, wind and gravity. Hope it worked, I love geography! Can you mark mine as the brainliest please! Also can you give me a thanks and a 5 star vote!
Answer:
its a
Explanation:
scrape - push or pull a hard or sharp implement across (a surface or object) so as to remove dirt or other matter.
Answer:
A 100 N force acting on a lever 2 m from the fulcrum balances an object 0.5 m from the fulcrum on. ... What is the weight of the object(in newtons)? What is its mass (in kg)? ... mass at the one end and effort arm is the distance between pivot and effort applied at the other end.
Explanation:
hpoe this helps you.
Answer:
Explanation:
The frequency is 16.0 Hz. That means that 16 of these waves can pass a single point in 1 second. We are given frequency and wavelength. The equation that relates them is
where f is frequency, v is velocity, and λ is wavelength. Putting all this together:
and solving for velocity,
v = 16.0(97.5) so
v = 1560 m/s. This wave can travel 1560 meters in a single second!!! Now that we know this velocity, we can use it in a proportion to find our unknown, which is how long, t, it will take to hear this sound 11000m away. (11 km is 11000m):
and cross multiply to get
1560t = 11000 so
t = 7.1 seconds