Answer:
Q = 590,940 J
Explanation:
Given:
Specific heat (c) = 1.75 J/(g⋅°C)
Mass(m) = 2.01 kg = 2,010
Change in temperature (ΔT) = 191 - 23 = 168°C
Find:
Heat required (Q)
Computation:
Q = mcΔT
Q = (2,010)(1.75)(168)
Q = 590,940 J
Q = 590.94 kJ
Answer:
-322.64 J
Explanation:
75 N * cos 125 * 7.5 = -322.64 J
There is a lot of glare off of the ice, due to the sun and it also is always good to have eye protection in case you fall face first :P
The peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.
<h3>Relationship between electric and magnetic field</h3>
The relationship between electric and magnetic field at a given peak electric field is given as;
c = (E₀) / (B₀)
where;
- c is speed of light
- E₀ is the peak electric field
- B₀ is the peak magnetic field
B₀ = E₀ / c
B₀ = (2.9) / (3 x 10⁹)
B₀ = 9.67 x 10⁻¹⁰ T
Thus, the peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.
Learn more about peak magnetic field here: brainly.com/question/24487261