Answer:
Explanation:
An example of binary compund is ZnI2 is zinc iodide
Answer:
0.46 V
Explanation:
The emf for the cell is given by:
Eº cell = Eº oxidation + Eº reduction
From the given balanced chemical equation, we can deduce that Fe²⁺ has been oxidized to Fe³⁺, and O reduced from 0 to negative 2, according to the half cell reactions:
4Fe²⁺ ⇒ Fe³⁺ + 4e⁻ oxidation
O₂ + 4H⁺ + 4 e⁻ ⇒ 2 H₂O reduction
From reference tables for the standard reduction potential, we get
Eº red Fe³⁺ / Fe²⁺ Eºred = 0.77 V
Eº red O₂ / H₂O Eºred = 1.23 V
Now all we need to do is change the sign of Eº reduction for the species being oxidized ( Fe²⁺ ) and add it to Eº reduction O₂:
Eº cell = Eº oxidation + Eº reduction = - (0.77 V ) + 1.23 V = 0.46 V
Answer:
See explanation below
Explanation:
The question is incomplete. However, here's the missing part of the question:
<em>"For the following reaction, Kp = 0.455 at 945 °C: </em>
<em>C(s) + 2H2(g) <--> CH4(g). </em>
<em>At equilibrium the partial pressure of H2 is 1.78 atm. What is the equilibrium partial pressure of CH4(g)?"</em>
With these question, and knowing the value of equilibrium of this reaction we can calculate the partial pressure of CH4.
The expression of Kp for this reaction is:
Kp = PpCH4 / (PpH2)²
We know the value of Kp and pressure of hydrogen, so, let's solve for CH4:
PpCH4 = Kp * PpH2²
*: You should note that we don't use Carbon here, because it's solid, and solids and liquids do not contribute in the expression of equilibrium, mainly because their concentration is constant and near to 1.
Now solving for PpCH4:
PpCH4 = 0.455 * (1.78)²
<u><em>PpCH4 = 1.44 atm</em></u>
Answer:
C. Atomic mass
Explanation:
i just did the quiz and got 100 :) i hope I get brainiest answer
B - two hydrogen atoms and one oxygen atom