Answer: Option (a) is the correct option.
Explanation:
In order to travel, sound does need a medium. The more closer the particles of a medium, the better sound can travel through it. Therefore, in solids sound travels very quickly because in solids particles are closer to each other. As a result, they can easily transmit the energy from one particle to another.
Thus, it becomes easier for sound to travel through it. On the other hand, in solids sound can travel in both longitudinal and transverse waves.
Hence, out of the given options, sound travels in transverse waves requires a medium to travel through is the correct option.
Answer:
Mass of chlorine = 47.22 g
Explanation:
Given data:
Mass of sodium = 30.5 g
Mass of chlorine= ?
Solution:
Chemical equation:
2Na + Cl₂ → 2NaCl
Number of moles of Na:
Number of moles = mass/molar mass
Number of moles = 30.5g/ 23 g/mol
Number of moles = 1.33 mol
Now we will compare the moles of Cl
₂ with Na from balance chemical equation.
Na : Cl
₂
2 : 1
1.33 : 1/2×1.33 = 0.665 mol
Mass of chlorine gas:
Mass = number of moles × molar mass
Mass = 0.665 mol × 71 g/mol
Mass = 47.22 g
The system will adjust itself in order to resist the change.
Explanation:
- Frenchman Le Chatelier in 1888 is credited with the Le Chatelier's principle
- His principle is a summary drawn from his findings on various factors that affects equilibrium.
- The principle states that "if any of the conditions of a system in equilibrium is changed, the system will adjust itself in order to annul the effect of the change".
- It is used to explain the effect of stress by applying change on a system.
- The changing conditions are usually concentration, temperature and pressure.
Learn more:
Chemical equilibrium brainly.com/question/10838453
#learnwithBrainly
11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
First, calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 1.3 atm
V= 6.75 Liters
n=?
R= 
T=298 K
Putting value in the given equation:


Moles = 0.3588 moles
Now,


Mass= 11.48 gram
Hence, 11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
The cyanide is

A carbon atom has 4 valance electrons and nitrogen has 5. Below is a Lewis-dot-structure of cyanide.
:N≡C.
The carbon atom is still one electron short of having a full octet and so it will seize another electron from almost anything, making the cyanide ion negative and whatever it took the electron from it now positive.