The cohesive forces between liquid molecules are responsible for the phenomenon known as surface tension<span>. I think the correct answer is option A. H2O will have the highest surface tension due to the hydrogen bonds that are present. Hope this answers the question. Have a nice day.</span>
D - for example, Potassium has 1 electron on its outer shell, whilst Chlorine has 7 electrons on its outer shell. Potassium loses one electron to Chlorine so that each of them have a full outer shell. This would form Potassium Chloride.
You may tell when a solution os formed when the item or particle, such as sugar or salt,
dissolves completely in the solvent, such as water.
Basically, you know when a solution is formed when the material you have placed in the solvent disappears :P
Answer:
Be (899 kj/mol) , Se (940.9 kj/mol), Ne(2081 kj/mol), He (2370 kj/mol),
Explanation:
For noble gases as they have complete octet so they require high amount of energy to remove the electron.
Trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
Trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
Answer:
enantiomers
Explanation:
L and D stand for levorotatory and dextrorotatory respectively. A levorotatory molecule will rotate the plane of plane polarised light left and a dextrorotatory molecule will rotate the plane of plane polarised light right. L and D molecules are non superimposable mirror image of each other. Therefore they are also known as enantiomers.