Answer:NASA's Lunar Atmosphere and Dust Environment probe, for instance, orbits the moon and collects information about its atmosphere and surface. This important data can help scientists learn more about moons, asteroids and other objects in the solar system.
Explanation:
Answer:
An ice pack uses friction and the chemicals inside make it mix to make it cold
Explanation:
The earths gravity attracts the molecules and collects the most near the surface. They all have weight and therefore have more pressure at the surface, as well. As you go higher, the attraction becomes less and these molecules some times fly off into space. This layer of equilibrium has the least of weight or pressure.
The various pressures are measured by precision instruments called barometers or pressure sensors and expressed in inches of mercury or millibars. <span>Air has a weight too, although not very much, If you "pile" the air mile high, the bottom pressure is heavier because of all the air sitting on top of it, therefore the pressure decreases with altitude, because there is less air "piled up" </span>
<span>An analogy would be the same with water.</span>
Planes have these instruments that tells the crew the altitude above sea level they are at when flying.
Answer:
It basically messes up the results
Explanation:
Pen ink consists of resins, pigments and other colouring dyes dissolved in appropriate solvents like propylene glycol, propyl alcohol and some other ethers. If the ball point pen is used to mark on the chromatography paper then these pigments will also move along with the solvent and interfere with the spots of our analyte.
If you use a ball point pen when doing a chromatogram, then the ink would separate as it is a mixture and run down the paper.
Graphite, or pencil lead however, is not an organic material and therefore will not be affected by common organic solvents used for thin-layer chromatography. Pen ink on the other hand will be readily absorbed by the solvent and will move up the plate.
Answer:
Explanation:
3.
Knowns: 100mL of solution; concentration of 0.7M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 100/1000 * 0.7 = 0.07 mole
Final Answer: 0.07mole
2.
Knowns: 5.50L of solution; concentration of 0.400M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 5.5 * 0.4 = 2.20 mole
Final Answer: 2.20 mole