Find the magnitude of the sum of two vectors; A is 5 km , and B is 7 , when the angle btween them is 120
1 answer:
Answer: 6.24 km
Explanation:
Given
The magnitude of the first vector(say) ![\left | a\right |=5\ km](https://tex.z-dn.net/?f=%5Cleft%20%7C%20%20a%5Cright%20%7C%3D5%5C%20km)
the magnitude of the second vector(say) ![\left | b\right |=7\ km](https://tex.z-dn.net/?f=%5Cleft%20%7C%20%20b%5Cright%20%7C%3D7%5C%20km)
the angle between them is ![120^{\circ}](https://tex.z-dn.net/?f=120%5E%7B%5Ccirc%7D)
The resultant vector magnitude is given by
![\left | \vec{R}\right |=\sqrt{a^2+b^2+2ab\cos \theta}](https://tex.z-dn.net/?f=%5Cleft%20%7C%20%20%5Cvec%7BR%7D%5Cright%20%7C%3D%5Csqrt%7Ba%5E2%2Bb%5E2%2B2ab%5Ccos%20%5Ctheta%7D)
![\left | \vec{R}\right |=\sqrt{5^2+7^2+2\times 5\times 7\cdot \cos 120^{\circ}}\\\left | \vec{R}\right |=\sqrt{74-35}=\sqrt{39}\\\left | \vec{R}\right |=6.24\ km](https://tex.z-dn.net/?f=%5Cleft%20%7C%20%20%5Cvec%7BR%7D%5Cright%20%7C%3D%5Csqrt%7B5%5E2%2B7%5E2%2B2%5Ctimes%205%5Ctimes%207%5Ccdot%20%5Ccos%20120%5E%7B%5Ccirc%7D%7D%5C%5C%5Cleft%20%7C%20%20%5Cvec%7BR%7D%5Cright%20%7C%3D%5Csqrt%7B74-35%7D%3D%5Csqrt%7B39%7D%5C%5C%5Cleft%20%7C%20%20%5Cvec%7BR%7D%5Cright%20%7C%3D6.24%5C%20km)
You might be interested in
I think the answer is A (sorry if it isn't).
More protons than electron
Answer:
an apple falling off a tree
Explanation:
Answer:
294.3 Joules
Explanation:
2kg*9.81m/s^2*Δ15=294.3J
Answer:
(A) We are using them faster than they are replenished by nature